Library rt.util.notation
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* We define a notation for the big concatenation operator.*)
Reserved Notation "\cat_ ( m <= i < n ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \cat_ ( m <= i < n ) '/ ' F ']'").
Notation "\cat_ ( m <= i < n ) F" :=
(\big[cat/[::]]_(m ≤ i < n) F%N) : nat_scope.
Reserved Notation "\cat_ ( m <= i < n | P ) F"
(at level 41, F at level 41, P at level 41, i, m, n at level 50,
format "'[' \cat_ ( m <= i < n | P ) '/ ' F ']'").
Notation "\cat_ ( m <= i < n | P ) F" :=
(\big[cat/[::]]_(m ≤ i < n | P) F%N) : nat_scope.
Reserved Notation "\cat_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \cat_ ( i < n ) '/ ' F ']'").
Notation "\cat_ ( i < n ) F" :=
(\big[cat/[::]]_(i < n) F%N) : nat_scope.
Reserved Notation "\cat_ ( i < n | P ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \cat_ ( i < n | P ) '/ ' F ']'").
Notation "\cat_ ( i < n | P ) F" :=
(\big[cat/[::]]_(i < n | P) F%N) : nat_scope.
(* We define a notation for the big concatenation operator.*)
Reserved Notation "\cat_ ( m <= i < n ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \cat_ ( m <= i < n ) '/ ' F ']'").
Notation "\cat_ ( m <= i < n ) F" :=
(\big[cat/[::]]_(m ≤ i < n) F%N) : nat_scope.
Reserved Notation "\cat_ ( m <= i < n | P ) F"
(at level 41, F at level 41, P at level 41, i, m, n at level 50,
format "'[' \cat_ ( m <= i < n | P ) '/ ' F ']'").
Notation "\cat_ ( m <= i < n | P ) F" :=
(\big[cat/[::]]_(m ≤ i < n | P) F%N) : nat_scope.
Reserved Notation "\cat_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \cat_ ( i < n ) '/ ' F ']'").
Notation "\cat_ ( i < n ) F" :=
(\big[cat/[::]]_(i < n) F%N) : nat_scope.
Reserved Notation "\cat_ ( i < n | P ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \cat_ ( i < n | P ) '/ ' F ']'").
Notation "\cat_ ( i < n | P ) F" :=
(\big[cat/[::]]_(i < n | P) F%N) : nat_scope.