
Towards Synchronization in Prosa
Antonin Riffard

MPI-SWS
Kaiserslautern, Germany

Felipe Cerqueira
MPI-SWS

Kaiserslautern, Germany

Björn B. Brandenburg
MPI-SWS

Kaiserslautern, Germany

Abstract—We report on our ongoing work on the formalization
of real-time resource sharing in Prosa, a framework based on
the Coq proof assistant for the development of machine-checked
schedulability analysis. We review the goals of the project, present
a preliminary specification of a generic resource model, and then
discuss the next steps and planned verification goals.

I. INTRODUCTION

Certification standards call for the temporal requirements of
safety-critical real-time systems to be thoroughly checked and
validated. For this purpose, the real-time systems community
has proposed a wealth of schedulability analysis techniques.
However, the complexity inherent in state-of-the-art analyses
has made it increasingly difficult to verify such analyses “by
hand,” and in fact there are ample recent examples that suggest
that human error is a significant cause for concern [1, 2, 3,
4, 5, 6, 7]. This unfortunately raises a fundamental question:
why should certification processes admit schedulability analysis
results as evidence of temporal correctness if the underlying
analysis methods may not be entirely sound?

To address this question and provide a trustworthy analyt-
ical foundation for the real-time systems of tomorrow, the
PROSA project [8] seeks to develop rigorous, provably-correct
schedulability analyses. Specifically, PROSA is an open-source
framework based on the COQ proof assistant that provides
a general and extensible formal specification of real-time
scheduling theory and allows users to develop machine-checked
schedulability analyses that are guaranteed to be correct.

To date, PROSA has been successfully used to reason
about various aspects of real-time scheduling theory, including
uniprocessor and multiprocessor scheduling, response-time anal-
yses [8], arbitrary processor affinity (APA) scheduling [1, 2],
sustainability in the context of self-suspending tasks [9], and
work on the certification of analysis tools by Guo et al. [10].

Nevertheless, despite these promising initial results, PROSA
still has limited applicability in the analysis of real-world
systems since it offers no support for mutual exclusion. To
address this issue, we are currently working towards support for
the verification of real-time synchronization protocols as well as
their associated blocking analyses in PROSA. In this paper, we
first discuss the goals of this extension and specific challenges,
then present our preliminary model of critical sections and
mutual exclusion, and finally conclude with a summary of the
next steps and planned verification goals.

This work was funded by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — 391919384.

II. AN INITIAL MODEL OF MUTUAL EXCLUSION

A. Goals and Challenges

The main goal of this project is to extend the current PROSA
specification with a generic resource model. Initially, we will
only target mutual exclusion, but plan to include additional
types of relaxed concurrency control mechanisms in the future,
such as reader-writer locks and k-exclusion protocols.

To formalize this resource model, we must define resources
and critical sections, restrict the notion of a valid schedule
to enforce mutual exclusion, and also adapt the properties of
work conservation and priority compliance to be coherent with
the resource model.

Those changes must be applied to both uniprocessor and
multiprocessor scheduling. In case of the latter, we must
additionally consider that jobs are allowed to spin (i.e., busy-
wait) when a resource is not available. Thus, when defining
this new schedule state, we must be careful to maintain
compatibility with existing definitions.

Moreover, to match the assumptions of existing analyses, we
must define the various types of nesting of critical sections. For
example, a restrictive, but also common, assumption is that a
job can hold at most one resource at a time (i.e., non-nested
critical sections). Another variation is to only allow well-nested
critical sections (i.e., given two critical sections A and B, either
A is completely inside B or they do not overlap). An even more
general model, such as found in the Linux kernel, allows critical
sections to be nested arbitrarily, as long as requests are ordered
to prevent deadlocks. In PROSA, we seek a single model for
critical sections that is able to express all types of nesting.

B. PROSA Foundations

Since PROSA already provides a foundation of common real-
time scheduling concepts, we can focus directly on formalizing
the resource model. To better understand the required changes,
we begin with an overview of key definitions in PROSA.

The most basic notion in PROSA is that of jobs, which
are represented by an opaque type called Job . Each Job is
associated with certain parameters, modeled as functions, such
as its actual execution cost:

Variable job cost : Job → progress.

The above syntax expresses that each Job has a parameter
called job cost that maps a job to a value of type progress,
which represents the amount of processor service required by
a given job. The type progress, in turn, is just an alias of nat
(the natural numbers), our model of discrete time.

Based on the notion of jobs, PROSA defines a uniprocessor
schedule as a function that maps each time instant optionally
to a job, represented by the type option Job (i.e., either None
or Some j with j ∈ Job), meaning that at any time, either the
processor is idle or exactly one job is scheduled. The type
time, in turn, is also an alias of nat.

Definition schedule := time → option Job .

Next, to model the progress and completion of execution,
we define the central notion of service received by a job. Given
a schedule sched , instantaneous and cumulative service of a
job j are defined in PROSA as follows.

Definition service at (j: Job) (t: time) : progress :=
if sched t == Some j then 1 else 0.

Definition service (j: Job) (t: time) : progress :=
\sum (t’ < t) service at j t’.

When moving to the multiprocessor case, the only major
change is the definition of schedule. Given the set of processors
processor num cpus , represented by integers in [0, num cpus),
PROSA defines a multiprocessor schedule as follows.

Definition schedule :=
processor num cpus → time → option Job .

Correspondingly, the definition of instantaneous service must
also consider multiple processors. The definition of cumulative
service, on the other hand, remains unchanged.

Definition service at (j: Job) (t: time) : progress :=
\sum (cpu < num cpus | sched cpu t == Some j) 1.

C. Formalization of Resource Sharing
Having presented an overview of the basic concepts in

PROSA, we now introduce critical sections, add constraints to
the schedule to respect mutual exclusion, and finally integrate
the task and resource models.

1) Introducing Critical Sections: During execution, a job
may be required to access certain shared resources in isolation.
Each of those execution intervals that are subject to mutual
exclusion is called a critical section.

We model a critical section cs as an execution interval
[cs start , cs end) that requires some resource cs resource.
More precisely, critical sections and resources are represented
by opaque types CriticalSection and Resource , with parameters
cs start , cs end (the bounds of the interval) and cs resource
(the targeted resource). In addition, for any job j, we ensure
that 0 ≤ cs start < cs end ≤ job cost j.

Variable cs: CriticalSection .
Variable cs start : CriticalSection → progress.
Variable cs end : CriticalSection → progress.
Variable cs resource: CriticalSection → Resource .

Note that cs start and cs end are expressed in terms of
progress, the service received by the job up to a given time.

Next, we associate with each Job a list of critical sections.

Variable job critical sections: Job → list CriticalSection .

Since jobs can have multiple critical sections, each with
arbitrary start and end times, our model is very permissive

and allows any type of nesting. Nevertheless, it can also
accommodate more restrictive constraints. For instance, non-
nested critical sections can be specified as follows.

Definition no overlapping critical sections :=
∀ j, ∀ cs1 cs2,

cs1 ∈ job critical sections j →
cs2 ∈ job critical sections j →
critical sections overlap cs1 cs2 → cs1 = cs2.

This predicate states that, if two critical sections cs1 and
cs2 intersect, they must be the same. To test for intersection,
we use the predicate critical sections overlap, which compares
the boundaries of the critical sections.

2) Scheduling and Resource Allocation: Having defined
critical sections, we now specify the conditions under which a
schedule is valid assuming a given resource model.

First, we must identify critical sections in the schedule. We
say that job j has entered a critical section cs by time t iff at
an earlier time t’ ≤ t, (a) job j has received enough service to
enter the left boundary cs start of the critical section, and (b)
job j is effectively executing at time t’.

Definition job has entered section
(j: Job) (cs: CriticalSection) (t: time) :=

∃ t’, t’ ≤ t ∧
service sched j t’ ≥ cs start cs ∧
service at sched j t’ > 0.

Next, we say that job j has exited the critical section iff its
received service is no longer within the right boundary cs end .

Definition job has exited section
(j: Job) (cs: CriticalSection) (t: time) :=

service sched j t ≥ cs end cs.

Using the predicates above, we define whether job j has
entered but not yet exited a critical section at time t.

Definition job in section
(j: Job) (cs: CriticalSection) (t: time) :=

job has entered section j cs t ∧
¬ job has exited section j cs t.

Considering that multiple critical sections can refer to the
same resource, we also define whether job j is holding a
resource r at time t.

Definition job holds resource
(j: Job) (r: Resource) (t: time) :=

∃ cs, cs ∈ job critical sections j ∧
cs resource cs = r ∧ job in section j cs t.

Finally, we formalize the key property of mutual exclusion,
i.e., at any time t, at most one job can access each resource.

Definition enforces mutual exclusion :=
∀ r t, ∀ (j1 j2: Job),

job holds resource j1 r t →
job holds resource j2 r t → j1 = j2.

Note that when formalizing reader-writer or k-exclusion
synchronization in the future, this definition will no longer be
valid, but it can be easily generalized to such cases.

3) Incorporating Spinning: Recall that in uniprocessor
systems, jobs must suspend when waiting for a resource. In
multiprocessors, however, it is sometimes more desirable to
spin (i.e., busy-wait) while waiting for a resource that is going
be released shortly.

Since a job that spins does not make progress in terms of
service, incorporating spinning requires changing the represen-
tation of a schedule as follows.

Inductive cpu state :=
Idle | Running of Job | Spinning of Job .

Definition schedule :=
processor num cpus → time → cpu state.

In the definition above, the keyword Inductive indicates
that cpu state is an enumerated type with three possible values:

• Idle, when the processor has no job scheduled (this
corresponds to None in the old definition);

• Running j, when the processor is executing a job j ∈ Job
(this corresponds to Some j in the old definition);

• Spinning j, when the currently scheduled job j ∈ Job is
busy-waiting for a resource.

Using the new processor state, we adapt the definition of
service at to count service only from Running processors:

Definition service at (j: Job) (t: time) : progress :=
\sum (cpu < num cpus | sched cpu t == Running j) 1.

Since the other definitions are built on top of ser-
vice at, no other changes are required and the property
valid resource allocation remains valid.

4) Incorporating Resources into the Task Model: The
remaining step is to incorporate job critical sections into the
task model, so that we can later formalize blocking analyses.

For each task we define the maximum number and maximum
length of critical sections (task num cs and task length cs,
respectively). Then, we define two predicates to enforce such
constraints for each individual job and critical section.

Variable task num cs: Task → Resource → nat.
Variable task length cs: Task → Resource → progress.

Definition num critical sections is bounded :=
∀ (j : Job), ∀ (r: Resource),

count mem r (map cs resource (job critical sections j))
≤ task num cs (job task j) r.

Definition critical section length is bounded :=
∀ (j : Job), ∀ cs, cs ∈ job critical sections j →

cs length cs
≤ task length cs (job task j) (cs resource cs).

In the above definition, the operation count mem r (map . . .)
counts the number of sections of job j that access resource r.

III. FUTURE WORK

As future work, we plan to extend the specification by
defining other types of nesting and formalizing reader-writer
and k-exclusion synchronization. In addition, we aim to define
real-time synchronization protocols and important concepts
such as the notion of priority inversion.

After concluding the specification, we seek to verify ex-
isting blocking analyses, so that they can be integrated with
schedulability analysis frameworks in PROSA.

As a first step, we will focus on the uniprocessor case with
the stack resource policy (SRP) and verify the existing blocking
bounds. Next, we will consider an extension of the protocol to
multiprocessor platforms and formalize results for spin-based
protocols, namely the multiprocessor SRP (MSRP) [11]. After
verifying the analysis developed by Gai et al. [11] for non-
nested critical sections, we will focus on the improved bound
based on linear programming by Wieder and Brandenburg [12].
Ultimately, we plan to formalize the blocking analysis for well-
ordered nested critical sections by Biondi et al. [13], and if
possible, generalize this result by incrementally removing or
weakening nesting hypotheses, using COQ’s abilities to detect
and flag required changes in the proofs.

REFERENCES
[1] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Revised Version:

Schedulability analysis of the Linux push and pull scheduler
with arbitrary processor affinities, revision 1,” Available at: https:
//www.mpi-sws.org/∼bbb/papers/, 2015.

[2] ——, “Correspondence article: A correction of the reduction-
based schedulability analysis for APA scheduling. To appear.”
Real-Time Systems, 2018.

[3] R. Bril, J. Lukkien, R. Davis, and A. Burns, “Message response
time analysis for ideal controller area network (CAN) refuted,”
Proceedings of the 5th International Workshop on Real-Time
Networks (RTN’06), 2006.

[4] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis, “Timing analysis
of fixed priority self-suspending sporadic tasks,” in Proceed-
ings of the 27th Euromicro Conference on Real-Time Systems
(ECRTS’15), 2015.

[5] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Ra-
jkumar, and D. de Niz, “Many suspensions, many problems: A
review of self-suspending tasks in real-time systems,” Department
of Computer Science, TU Dortmund, Tech. Rep. 854, 2016.

[6] R. Davis, A. Burns, J. Marinho, V. Nelis, S. Petters, and
M. Bertogna, “Global fixed priority scheduling with deferred pre-
emption revisited,” Univ. of York, Tech. Rep. YCS-2013-483,
2013.

[7] R. Devillers and J. Goossens, “Liu and Layland’s schedulability
test revisited,” Information Processing Letters, vol. 73, no. 5, pp.
157–161, 2000.

[8] F. Cerqueira, F. Stutz, and B. Brandenburg, “PROSA: A case
for readable mechanized schedulability analysis,” in Proceed-
ings of the 28th Euromicro Conference on Real-Time Systems
(ECRTS’16), 2016.

[9] F. Cerqueira, G. Nelissen, and B. Brandenburg, “On strong and
weak sustainability, with an application to self-suspending real-
time tasks,” in Proceedings of the 30th Euromicro Conference on
Real-Time Systems (ECRTS’18), 2018.

[10] X. Guo, S. Quinton, P. Fradet, and J.-F. Monin, “Work In Progress:
Toward a Coq-certified Tool for the Schedulability Analysis of
Tasks with Offsets,” in Work in Progress Session, Real-Time
Systems Symposium (RTSS’17), Paris, France, 2017.

[11] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utiliza-
tion of real-time task sets in single and multi-processor systems-
on-a-chip,” in Proceedings of the 22nd Real-Time Systems Sympo-
sium (RTSS’01), 2001.

[12] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR:
Blocking analysis of FIFO, unordered, and priority-ordered spin
locks,” in Proceedings of the 34th Real-Time Systems Symposium
(RTSS’13), 2013.

[13] A. Biondi, B. Brandenburg, and A. Wieder, “A blocking bound
for nested FIFO spin locks,” in Proceedings of the 37th Real-Time
Systems Symposium (RTSS’16), 2016.

https://www.mpi-sws.org/~bbb/papers/
https://www.mpi-sws.org/~bbb/papers/

	Introduction
	An Initial Model of Mutual Exclusion
	Goals and Challenges
	Prosa Foundations
	Formalization of Resource Sharing
	Introducing Critical Sections
	Scheduling and Resource Allocation
	Incorporating Spinning
	Incorporating Resources into the Task Model

	Future work

