Library rt.util.sum

Require Import rt.util.tactics rt.util.notation rt.util.sorting rt.util.nat.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop path.

(* Lemmas about arithmetic with sums. *)
Section SumArithmetic.

  (* Inequality with sums is monotonic with their functions. *)
  Lemma sum_diff_monotonic :
     n G F,
      ( i : nat, i < n G i F i)
      (\sum_(0 i < n) (G i)) (\sum_(0 i < n) (F i)).
  Proof.
    intros n G F ALL.
    rewrite big_nat_cond [\sum_(0 i < n) F i]big_nat_cond.
    apply leq_sum; intros i LT; rewrite andbT in LT.
    move: LT ⇒ /andP LT; des.
    by apply ALL, leq_trans with (n := n); ins.
  Qed.

  Lemma sum_diff :
     n F G,
      ( i (LT: i < n), F i G i)
      \sum_(0 i < n) (F i - G i) =
        (\sum_(0 i < n) (F i)) - (\sum_(0 i < n) (G i)).
  Proof.
    intros n F G ALL.
    induction n; ins; first by rewrite 3?big_geq.
    assert (ALL': i, i < n G i F i).
      by ins; apply ALL, leq_trans with (n := n); ins.
    rewrite 3?big_nat_recr // IHn //; simpl.
    rewrite subh1; last by apply sum_diff_monotonic.
    rewrite subh2 //; try apply sum_diff_monotonic; ins.
    rewrite subh1; ins; apply sum_diff_monotonic; ins.
    by apply ALL; rewrite ltnS leqnn.
  Qed.

  Lemma telescoping_sum :
     (T: Type) (F: Tnat) r (x0: T),
    ( i, i < (size r).-1 F (nth x0 r i) F (nth x0 r i.+1))
      F (nth x0 r (size r).-1) - F (nth x0 r 0) =
        \sum_(0 i < (size r).-1) (F (nth x0 r (i.+1)) - F (nth x0 r i)).
  Proof.
    intros T F r x0 ALL.
    have ADD1 := big_add1.
    have RECL := big_nat_recl.
    specialize (ADD1 nat 0 addn 0 (size r) (fun xtrue) (fun iF (nth x0 r i))).
    specialize (RECL nat 0 addn (size r).-1 0 (fun iF (nth x0 r i))).
    rewrite sum_diff; last by ins.
    rewrite addmovr; last by rewrite -[_.-1]add0n; apply prev_le_next; try rewrite add0n leqnn.
    rewrite subh1; last by apply sum_diff_monotonic.
    rewrite addnC -RECL //.
    rewrite addmovl; last by rewrite big_nat_recr // -{1}[\sum_(_ _ < _) _]addn0; apply leq_add.
    by rewrite addnC -big_nat_recr.
  Qed.

  Lemma leq_sum_sub_uniq :
     (T: eqType) (r1 r2: seq T) F,
      uniq r1
      {subset r1 r2}
      \sum_(i <- r1) F i \sum_(i <- r2) F i.
  Proof.
    intros T r1 r2 F UNIQ SUB; generalize dependent r2.
    induction r1 as [| x r1' IH]; first by ins; rewrite big_nil.
    {
      intros r2 SUB.
      assert (IN: x r2).
        by apply SUB; rewrite in_cons eq_refl orTb.
      simpl in UNIQ; move: UNIQ ⇒ /andP [NOTIN UNIQ]; specialize (IH UNIQ).
      destruct (splitPr IN).
      rewrite big_cat 2!big_cons /= addnA [_ + F x]addnC -addnA leq_add2l.
      rewrite mem_cat in_cons eq_refl in IN.
      rewrite -big_cat /=.
      apply IH; red; intros x0 IN0.
      rewrite mem_cat.
      feed (SUB x0); first by rewrite in_cons IN0 orbT.
      rewrite mem_cat in_cons in SUB.
      move: SUB ⇒ /orP [SUB1 | /orP [/eqP EQx | SUB2]];
        [by rewrite SUB1 | | by rewrite SUB2 orbT].
      by rewrite -EQx IN0 in NOTIN.
    }
  Qed.

End SumArithmetic.

(* Additional lemmas about sum and max big operators. *)
Section ExtraLemmasSumMax.

  Lemma leq_big_max I r (P : pred I) (E1 E2 : I nat) :
    ( i, P i E1 i E2 i)
      \max_(i <- r | P i) E1 i \max_(i <- r | P i) E2 i.
  Proof.
    moveleE12; elim/big_ind2 : _ ⇒ // m1 m2 n1 n2.
    intros LE1 LE2; rewrite leq_max; unfold maxn.
    by destruct (m2 < n2) eqn:LT; [by apply/orP; right | by apply/orP; left].
  Qed.

  Lemma sum_nat_eq0_nat (T : eqType) (F : T nat) (r: seq T) :
    all (fun xF x = 0) r = (\sum_(i <- r) F i = 0).
  Proof.
    destruct (all (fun xF x = 0) r) eqn:ZERO.
    {
      move: ZERO ⇒ /allP ZERO; rewrite -leqn0.
      rewrite big_seq_cond (eq_bigr (fun x ⇒ 0));
        first by rewrite big_const_seq iter_addn mul0n addn0 leqnn.
      intro i; rewrite andbT; intros IN.
      specialize (ZERO i); rewrite IN in ZERO.
      by move: ZERO ⇒ /implyP ZERO; apply/eqP; apply ZERO.
    }
    {
      apply negbT in ZERO; rewrite -has_predC in ZERO.
      move: ZERO ⇒ /hasP ZERO; destruct ZERO as [x IN NEQ]; simpl in NEQ.
      rewrite (big_rem x) /=; last by done.
      symmetry; apply negbTE; rewrite neq_ltn; apply/orP; right.
      apply leq_trans with (n := F x); last by apply leq_addr.
      by rewrite lt0n.
    }
  Qed.

  Lemma extend_sum :
     t1 t2 t1' t2' F,
      t1' t1
      t2 t2'
      \sum_(t1 t < t2) F t \sum_(t1' t < t2') F t.
  Proof.
    intros t1 t2 t1' t2' F LE1 LE2.
    destruct (t1 t2) eqn:LE12;
      last by apply negbT in LE12; rewrite -ltnNge in LE12; rewrite big_geq // ltnW.
    rewritebig_cat_nat with (m := t1') (n := t1); try (by done); simpl;
      last by apply leq_trans with (n := t2).
    rewritebig_cat_nat with (p := t2') (n := t2); try (by done); simpl.
    by rewrite addnC -addnA; apply leq_addr.
  Qed.

  Lemma leq_sum_nat m n (P : pred nat) (E1 E2 : nat nat) :
    ( i, m i < n P i E1 i E2 i)
    \sum_(m i < n | P i) E1 i \sum_(m i < n | P i) E2 i.
  Proof.
    intros LE.
    rewrite big_nat_cond [\sum_(_ _ < _| P _)_]big_nat_cond.
    by apply leq_sum; movej /andP [IN H]; apply LE.
  Qed.

  Lemma leq_sum_seq (I: eqType) (r: seq I) (P : pred I) (E1 E2 : I nat) :
    ( i, i r P i E1 i E2 i)
    \sum_(i <- r | P i) E1 i \sum_(i <- r | P i) E2 i.
  Proof.
    intros LE.
    rewrite big_seq_cond [\sum_(_ <- _| P _)_]big_seq_cond.
    by apply leq_sum; movej /andP [IN H]; apply LE.
  Qed.

End ExtraLemmasSumMax.