Library rt.analysis.global.jitter.workload_bound

Require Import rt.util.all.
Require Import rt.model.arrival.basic.task rt.model.arrival.basic.task_arrival.
Require Import rt.model.schedule.global.workload rt.model.schedule.global.response_time
               rt.model.schedule.global.schedulability.
Require Import rt.model.schedule.global.jitter.job rt.model.schedule.global.jitter.schedule.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq div fintype bigop path.

Module WorkloadBoundJitter.

  Import JobWithJitter SporadicTaskset ScheduleWithJitter ScheduleOfSporadicTask
         TaskArrival ResponseTime Schedulability Workload.

  Section WorkloadBoundJitterDef.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task time.
    Variable task_period: sporadic_task time.
    Variable task_jitter: sporadic_task time.

    Variable tsk: sporadic_task.
    Variable R_tsk: time. (* Known response-time bound for the task *)
    Variable delta: time. (* Length of the interval *)

    (* Bound on the number of jobs that execute completely in the interval *)
    Definition max_jobs_jitter :=
      div_floor (delta + task_jitter tsk + R_tsk - task_cost tsk) (task_period tsk).

    (* Bertogna and Cirinei's bound on the workload of a task in an interval of length delta *)
    Definition W_jitter :=
      let e_k := (task_cost tsk) in
      let p_k := (task_period tsk) in
        minn e_k (delta + task_jitter tsk + R_tsk - e_k - max_jobs_jitter × p_k) + max_jobs_jitter × e_k.

  End WorkloadBoundJitterDef.

  Section BasicLemmas.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task time.
    Variable task_period: sporadic_task time.
    Variable task_jitter: sporadic_task time.

    (* Let tsk be any task...*)
    Variable tsk: sporadic_task.

    (* ...with period > 0. *)
    Hypothesis H_period_positive: task_period tsk > 0.

    (* Let R1 <= R2 be two response-time bounds that
       are larger than the cost of the tsk. *)

    Variable R1 R2: time.
    Hypothesis H_R_lower_bound: R1 task_cost tsk.
    Hypothesis H_R1_le_R2: R1 R2.

    Let workload_bound := W_jitter task_cost task_period task_jitter tsk.

    (* Then, Bertogna and Cirinei's workload bound is monotonically increasing. *)
    Lemma W_monotonic :
       t1 t2,
        t1 t2
        workload_bound R1 t1 workload_bound R2 t2.
    Proof.
      intros t1 t2 LEt.
      unfold workload_bound, W_jitter, max_jobs_jitter, div_floor; rewrite 2!subndiv_eq_mod.
      set e := task_cost tsk; set p := task_period tsk; set j := task_jitter tsk.
      set x1 := t1 + j + R1.
      set x2 := t2 + j + R2.
      set delta := x2 - x1.
      rewrite -[x2](addKn x1) -addnBA; fold delta;
        last by rewrite leq_add // leq_add //.

      induction delta; first by rewrite addn0 leqnn.
      {
         apply (leq_trans IHdelta).

         (* Prove special case for p <= 1. *)
         destruct (leqP p 1) as [LTp | GTp].
         {
           rewrite leq_eqVlt in LTp; move: LTp ⇒ /orP LTp; des;
             last by rewrite ltnS in LTp; apply (leq_trans H_period_positive) in LTp.
           {
             rewrite LTp 2!modn1 2!divn1.
             rewrite leq_add2l leq_mul2r; apply/orP; right.
             by rewrite leq_sub2r // leq_add2l.
           }
         }
         (* Harder case: p > 1. *)
         {
           assert (EQ: (x1 + delta.+1 - e) = (x1 + delta - e).+1).
           {
             rewrite -[(x1 + delta - e).+1]addn1.
             rewrite [_+1]addnC addnBA; last first.
             {
               apply (leq_trans H_R_lower_bound).
               by rewrite -addnA addnC -addnA leq_addr.
             }
             by rewrite [1 + _]addnC -addnA addn1.
           } rewriteEQ in *; clear EQ.

         have DIV := divSn_cases (x1 + delta - e) p GTp; des.
         {
           rewrite DIV leq_add2r leq_min; apply/andP; split;
             first by rewrite geq_minl.
           by apply leq_trans with (n := (x1 + delta - e) %% p);
             [by rewrite geq_minr | by rewrite -DIV0 addn1 leqnSn].
         }
         {
           rewrite -[minn e _]add0n -addnA; apply leq_add; first by ins.
           rewrite -DIV mulnDl mul1n [_ + e]addnC.
           by apply leq_add; [by rewrite geq_minl | by ins].
         }
       }
     }
   Qed.

  End BasicLemmas.

  Section ProofWorkloadBound.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task time.
    Variable task_period: sporadic_task time.
    Variable task_deadline: sporadic_task time.
    Variable task_jitter: sporadic_task time.

    Context {Job: eqType}.
    Variable job_arrival: Job time.
    Variable job_cost: Job time.
    Variable job_task: Job sporadic_task.
    Variable job_deadline: Job time.
    Variable job_jitter: Job time.

    (* Consider any job arrival sequence... *)
    Variable arr_seq: arrival_sequence Job.

    (* ...where jobs have valid parameters. *)
    Hypothesis H_jobs_have_valid_parameters:
       j,
        arrives_in arr_seq j
        valid_sporadic_job_with_jitter task_cost task_deadline task_jitter job_cost
                                       job_deadline job_task job_jitter j.

    (* Consider any schedule of this arrival sequence. *)
    Context {num_cpus: nat}.
    Variable sched: schedule Job num_cpus.
    Hypothesis H_jobs_come_from_arrival_sequence:
      jobs_come_from_arrival_sequence sched arr_seq.

    (* Assumption: jobs only execute after the jitter.
       This is used to discard the workload of jobs that arrive after
       the end of the interval t1 + delta. *)

    Hypothesis H_jobs_must_arrive_to_execute:
      jobs_execute_after_jitter job_arrival job_jitter sched.

    (* Assumption: jobs do not execute after they completed.
       This is used to eliminate jobs that complete before the start of the interval t1. *)

    Hypothesis H_completed_jobs_dont_execute:
      completed_jobs_dont_execute job_cost sched.

    (* Assumption: Jobs are sequential.
       This is required to use interval lengths as a measure of service. *)

    Hypothesis H_sequential_jobs: sequential_jobs sched.

    (* Assumption: sporadic task model.
       This is necessary to conclude that consecutive jobs ordered by arrival times
       are separated by at least 'period' times units. *)

    Hypothesis H_sporadic_tasks:
      sporadic_task_model task_period job_arrival job_task arr_seq.

    (* Before starting the proof, let's give simpler names to the definitions. *)
    Let job_has_completed_by := completed job_cost sched.

    Let workload_of (tsk: sporadic_task) (t1 t2: time) :=
      workload job_task sched tsk t1 t2.

    (* Now we define the theorem. Let tsk be any task in the taskset. *)
    Variable tsk: sporadic_task.

    (* Assumption: the task must have valid parameters:
         a) period > 0 (used in divisions)
         b) deadline of the jobs = deadline of the task
         c) cost <= period
            (used to prove that the distance between the first and last
             jobs is at least (cost + n*period), where n is the number
             of middle jobs. If cost >> period, the claim does not hold
             for every task set. *)

    Hypothesis H_valid_task_parameters:
      is_valid_sporadic_task task_cost task_period task_deadline tsk.

    (* Assumption: the task must have a constrained deadline.
       This is required to prove that n_k (max_jobs) from Bertogna
       and Cirinei's formula accounts for at least the number of
       middle jobs (i.e., number of jobs - 2 in the worst case). *)

    Hypothesis H_constrained_deadline: task_deadline tsk task_period tsk.

    (* Consider an interval [t1, t1 + delta). *)
    Variable t1 delta: time.

    (* Assume that a response-time bound R_tsk for that task in any
       schedule of this processor platform is also given,
       such that R_tsk >= task_cost tsk, and task_jitter tsk + R_tsk <= task_deadline tsk. *)

    Variable R_tsk: time.

    Hypothesis H_response_time_ge_cost: R_tsk task_cost tsk.
    Hypothesis H_no_deadline_miss: task_jitter tsk + R_tsk task_deadline tsk.

    Hypothesis H_response_time_bound :
       j,
        arrives_in arr_seq j
        job_task j = tsk
        job_arrival j + task_jitter tsk + R_tsk < t1 + delta
        job_has_completed_by j (job_arrival j + task_jitter tsk + R_tsk).

    Section MainProof.

      (* In this section, we prove that the workload of a task in the
         interval [t1, t1 + delta) is bounded by W. *)


      (* Let's simplify the names a bit. *)
      Let t2 := t1 + delta.
      Let n_k := max_jobs_jitter task_cost task_period task_jitter tsk R_tsk delta.
      Let workload_bound := W_jitter task_cost task_period task_jitter tsk R_tsk delta.

      (* Since we only care about the workload of tsk, we restrict
         our view to the set of jobs of tsk scheduled in [t1, t2). *)

      Let scheduled_jobs :=
        jobs_of_task_scheduled_between job_task sched tsk t1 t2.

      (* Now, let's consider the list of interfering jobs sorted by arrival time. *)
      Let earlier_arrival := fun x yjob_arrival x job_arrival y.
      Let sorted_jobs := (sort earlier_arrival scheduled_jobs).

      (* The first step consists in simplifying the sum corresponding
         to the workload. *)

      Section SimplifyJobSequence.

        (* After switching to the definition of workload based on a list
           of jobs, we show that sorting the list preserves the sum. *)

        Lemma workload_bound_simpl_by_sorting_scheduled_jobs :
          workload_joblist job_task sched tsk t1 t2 =
           \sum_(i <- sorted_jobs) service_during sched i t1 t2.
        Proof.
          unfold workload_joblist; fold scheduled_jobs.
          rewrite (eq_big_perm sorted_jobs) /= //.
          by rewrite -(perm_sort earlier_arrival).
        Qed.

        (* Remember that both sequences have the same set of elements *)
        Lemma workload_bound_job_in_same_sequence :
           j,
            (j \in scheduled_jobs) = (j \in sorted_jobs).
        Proof.
          by apply perm_eq_mem; rewrite -(perm_sort earlier_arrival).
        Qed.

        (* Remember that all jobs in the sorted sequence is an
           interfering job of task tsk. *)

        Lemma workload_bound_all_jobs_from_tsk :
           j_i,
            j_i \in sorted_jobs
            arrives_in arr_seq j_i
            job_task j_i = tsk
            service_during sched j_i t1 t2 != 0
            j_i \in jobs_scheduled_between sched t1 t2.
        Proof.
          rename H_jobs_come_from_arrival_sequence into FROMarr.
          intros j_i LTi.
          rewrite -workload_bound_job_in_same_sequence mem_filter in LTi; des.
          have IN := LTi0.
          unfold jobs_scheduled_between in *; rewrite mem_undup in IN.
          apply mem_bigcat_nat_exists in IN; des.
          rewrite mem_scheduled_jobs_eq_scheduled in IN.
          repeat split; try (by done); first by apply (FROMarr j_i i).
          apply service_implies_cumulative_service with (t := i);
            first by apply/andP; split.
          by rewrite -not_scheduled_no_service negbK.
        Qed.

        (* Remember that consecutive jobs are ordered by arrival. *)
        Lemma workload_bound_jobs_ordered_by_arrival :
           i elem,
            i < (size sorted_jobs).-1
            earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
        Proof.
          intros i elem LT.
          assert (SORT: sorted earlier_arrival sorted_jobs).
            by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
          by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
        Qed.

      End SimplifyJobSequence.

      (* Next, we show that if the number of jobs is no larger than n_k,
         the workload bound trivially holds. *)

      Section WorkloadNotManyJobs.

        Lemma workload_bound_holds_for_at_most_n_k_jobs :
          size sorted_jobs n_k
          \sum_(i <- sorted_jobs) service_during sched i t1 t2
            workload_bound.
        Proof.
        intros LEnk.
        rewrite -[\sum_(_ <- _ | _) _]add0n leq_add //.
        apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk);
          last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
        rewrite [\sum_(_ <- _) service_during _ _ _ _]big_seq_cond.
        rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
        apply leq_sum; intros j_i; move/andP ⇒ [INi _].
        apply workload_bound_all_jobs_from_tsk in INi; des.
        eapply cumulative_service_le_task_cost;
          [by apply H_completed_jobs_dont_execute | by apply INi0 |].
        by apply H_jobs_have_valid_parameters.
      Qed.

      End WorkloadNotManyJobs.

      (* Otherwise, assume that the number of jobs is larger than n_k >= 0.
         First, consider the simple case with only one job. *)

      Section WorkloadSingleJob.

        (* Assume that there's at least one job in the sorted list. *)
        Hypothesis H_at_least_one_job: size sorted_jobs > 0.

        Variable elem: Job.
        Let j_fst := nth elem sorted_jobs 0.

        (* The first job is an interfering job of task tsk. *)
        Lemma workload_bound_j_fst_is_job_of_tsk :
          arrives_in arr_seq j_fst
          job_task j_fst = tsk
          service_during sched j_fst t1 t2 != 0
          j_fst \in jobs_scheduled_between sched t1 t2.
        Proof.
          by apply workload_bound_all_jobs_from_tsk, mem_nth.
        Qed.

        (* The workload bound holds for the single job. *)
        Lemma workload_bound_holds_for_a_single_job :
          \sum_(0 i < 1) service_during sched (nth elem sorted_jobs i) t1 t2
          workload_bound.
        Proof.
          unfold workload_bound, W_jitter; fold n_k.
          have INfst := workload_bound_j_fst_is_job_of_tsk; des.
          rewrite big_nat_recr // big_geq // [nth]lock /= -lock add0n.
          destruct n_k; last first.
          {
            rewrite -[service_during _ _ _ _]add0n; rewrite leq_add //.
            rewrite -[service_during _ _ _ _]add0n [_× task_cost tsk]mulSnr.
            apply leq_add; first by done.
            by eapply cumulative_service_le_task_cost;
              [| by apply INfst0 | by apply H_jobs_have_valid_parameters].
          }
          {
            rewrite 2!mul0n addn0 subn0 leq_min; apply/andP; split;
              first by eapply cumulative_service_le_task_cost;
               [| by apply INfst0 | by apply H_jobs_have_valid_parameters].
            rewrite -addnBA // -[service_during _ _ _ _]addn0.
            rewrite -addnA; apply leq_add; last by done.
            by apply cumulative_service_le_delta.
          }
        Qed.

      End WorkloadSingleJob.

      (* Next, consider the last case where there are at least two jobs:
         the first job j_fst, and the last job j_lst. *)

      Section WorkloadTwoOrMoreJobs.

        (* There are at least two jobs. *)
        Variable num_mid_jobs: nat.
        Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.

        Variable elem: Job.
        Let j_fst := nth elem sorted_jobs 0.
        Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.

        (* The last job is an interfering job of task tsk. *)
        Lemma workload_bound_j_lst_is_job_of_tsk :
          arrives_in arr_seq j_lst
          job_task j_lst = tsk
          service_during sched j_lst t1 t2 != 0
          j_lst \in jobs_scheduled_between sched t1 t2.
        Proof.
          apply workload_bound_all_jobs_from_tsk, mem_nth.
          by rewrite H_at_least_two_jobs.
        Qed.

        (* The response time of the first job must fall inside the interval. *)
        Lemma workload_bound_response_time_of_first_job_inside_interval :
          t1 job_arrival j_fst + task_jitter tsk + R_tsk.
        Proof.
          rename H_jobs_have_valid_parameters into JOBPARAMS.
          unfold valid_sporadic_job_with_jitter in ×.
          rewrite leqNgt; apply /negP; unfold not; intro LTt1.
          exploit workload_bound_all_jobs_from_tsk.
          {
            apply mem_nth; instantiate (1 := 0).
            apply ltn_trans with (n := 1); [by done | by rewrite H_at_least_two_jobs].
          }
          instantiate (1 := elem); move ⇒ [FSTARR [FSTtsk [/eqP FSTserv FSTin]]].
          apply FSTserv.
          apply cumulative_service_after_job_rt_zero with (job_arrival0 := job_arrival)
                  (job_cost0 := job_cost) (R := task_jitter tsk + R_tsk);
            [by done | | by rewrite addnA ltnW].
          rewrite addnA; apply H_response_time_bound; try (by done).
          by apply leq_trans with (n := t1); last by apply leq_addr.
        Qed.

        (* The arrival of the last job must also fall inside the interval. *)
        Lemma workload_bound_last_job_arrives_before_end_of_interval :
          job_arrival j_lst < t2.
        Proof.
          rewrite leqNgt; apply/negP; unfold not; intro LT2.
          exploit workload_bound_all_jobs_from_tsk.
          {
            apply mem_nth; instantiate (1 := num_mid_jobs.+1).
            by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
          }
          instantiate (1 := elem); move ⇒ [LSTarr [LSTtsk [/eqP LSTserv LSTin]]].
          apply LSTserv.
          apply (cumulative_service_before_job_arrival_zero job_arrival); last by done.
          by apply arrival_before_jitter with (job_jitter0 := job_jitter).
        Qed.

        (* Next, we upper-bound the service of the first and last jobs using their arrival times. *)
        Lemma workload_bound_service_of_first_and_last_jobs :
          service_during sched j_fst t1 t2 +
          service_during sched j_lst t1 t2
            (job_arrival j_fst + task_jitter tsk + R_tsk - t1) + (t2 - job_arrival j_lst).
        Proof.
          apply leq_add; unfold service_during.
          {
            rewrite -[_ + _ - _]mul1n -[1×_]addn0 -iter_addn -big_const_nat.
            apply leq_trans with (n := \sum_(t1 t < job_arrival j_fst + task_jitter tsk + R_tsk)
                                        service_at sched j_fst t);
              last by apply leq_sum; ins; apply service_at_most_one.
            destruct (job_arrival j_fst + task_jitter tsk + R_tsk < t2) eqn:LEt2; last first.
            {
              unfold t2; apply negbT in LEt2; rewrite -ltnNge in LEt2.
              rewritebig_cat_nat with (n := t1 + delta) (p := job_arrival j_fst + task_jitter tsk + R_tsk);
                [by apply leq_addr | by apply leq_addr | by done].
            }
            {
              rewritebig_cat_nat with (n := job_arrival j_fst + task_jitter tsk + R_tsk);
               [simpl
               |by apply workload_bound_response_time_of_first_job_inside_interval
               | by apply ltnW].
              rewrite -addnA.
              rewrite [\sum_(_ _ < t2)_]
                      (cumulative_service_after_job_rt_zero job_arrival job_cost _ _ _
                       (task_jitter tsk + R_tsk)); rewrite ?leqnn //; first by rewrite addn0 leqnn.
              rewrite addnA.
              have ALL := workload_bound_all_jobs_from_tsk j_fst.
              feed ALL; first by apply mem_nth; rewrite H_at_least_two_jobs.
              move: ALL ⇒ [FSTarr [FSTtsk _]].
              by apply H_response_time_bound.
            }
          }
          {
            rewrite -[_ - _]mul1n -[1 × _]addn0 -iter_addn -big_const_nat.
            destruct (job_arrival j_lst t1) eqn:LT.
            {
              apply leq_trans with (n := \sum_(job_arrival j_lst t < t2)
                                          service_at sched j_lst t);
                last by apply leq_sum; ins; apply service_at_most_one.
              rewritebig_cat_nat with (m := job_arrival j_lst) (n := t1);
                [by apply leq_addl | by done | by apply leq_addr].
            }
            {
              apply negbT in LT; rewrite -ltnNge in LT.
              rewritebig_cat_nat with (n := job_arrival j_lst);
                [| by apply ltnW
                 | by apply ltnW, workload_bound_last_job_arrives_before_end_of_interval].
              rewrite /= -[\sum_(_ _ < _) 1]add0n; apply leq_add;
                last by apply leq_sum; ins; apply service_at_most_one.
              rewrite (cumulative_service_before_job_arrival_zero job_arrival);
                [by apply leqnn | | by apply leqnn].
              by apply arrival_before_jitter with (job_jitter0 := job_jitter).
            }
          }
        Qed.

        (* Simplify the expression from the previous lemma. *)
        Lemma workload_bound_simpl_expression_with_first_and_last :
          job_arrival j_fst + task_jitter tsk + R_tsk - t1 + (t2 - job_arrival j_lst) =
                       delta + task_jitter tsk + R_tsk - (job_arrival j_lst - job_arrival j_fst).
        Proof.
          have lemma1 := workload_bound_last_job_arrives_before_end_of_interval.
          have lemma2 := workload_bound_response_time_of_first_job_inside_interval.
          rewrite addnBA; last by apply ltnW.
          rewrite subh1; last by done.
          rewrite -addnBA; last by apply leq_addr.

          rewrite addnC; unfold t2.
          rewrite [t1 + _]addnC -[delta + t1 - _]subnBA // subnn subn0.
          rewrite [_ + R_tsk]addnC addnA.
          rewrite [_ + task_jitter _]addnC.
          rewrite addnA -subnBA; last first.
          {
            unfold j_fst, j_lst; rewrite -[_.+1]add0n.
            apply prev_le_next; last by rewrite add0n H_at_least_two_jobs ltnSn.
            by ins; apply workload_bound_jobs_ordered_by_arrival.
          }
          by rewrite -addnA [R_tsk + _]addnC addnA.
        Qed.

        (* Bound the service of the middle jobs. *)
        Lemma workload_bound_service_of_middle_jobs :
          \sum_(0 i < num_mid_jobs)
            service_during sched (nth elem sorted_jobs i.+1) t1 t2
            num_mid_jobs × task_cost tsk.
        Proof.
          apply leq_trans with (n := num_mid_jobs × task_cost tsk);
            last by rewrite leq_mul2l; apply/orP; right.
          apply leq_trans with (n := \sum_(0 i < num_mid_jobs) task_cost tsk);
            last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
          rewrite big_nat_cond [\sum_(0 i < num_mid_jobs) task_cost _]big_nat_cond.
          apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.
          exploit workload_bound_all_jobs_from_tsk.
          {
            instantiate (1 := nth elem sorted_jobs i.+1).
            apply mem_nth; rewrite H_at_least_two_jobs.
            by rewrite ltnS; apply leq_trans with (n := num_mid_jobs).
          }
          move ⇒ [ARRin [JOBtsk _]].
          by eapply cumulative_service_le_task_cost;
            [by apply H_completed_jobs_dont_execute | | by apply H_jobs_have_valid_parameters].
        Qed.

        (* Conclude that the distance between first and last is at least num_mid_jobs + 1 periods. *)
        Lemma workload_bound_many_periods_in_between :
          job_arrival j_lst - job_arrival j_fst num_mid_jobs.+1 × (task_period tsk).
        Proof.
          assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
            by rewrite H_at_least_two_jobs.
          unfold j_fst, j_lst; rewrite EQnk telescoping_sum;
            last by ins; apply workload_bound_jobs_ordered_by_arrival.
          rewrite -[_ × _ tsk]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
          rewrite big_nat_cond [\sum_(0 i < _)(_-_)]big_nat_cond.
          apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.

          (* To simplify, call the jobs 'cur' and 'next' *)
          set cur := nth elem sorted_jobs i.
          set next := nth elem sorted_jobs i.+1.

          have ALL := workload_bound_all_jobs_from_tsk.

          (* Show that cur arrives earlier than next *)
          assert (ARRle: job_arrival cur job_arrival next).
            by unfold cur, next; apply workload_bound_jobs_ordered_by_arrival.

          feed (workload_bound_all_jobs_from_tsk cur).
            by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs.
          intros [CURarr [CURtsk [_ CURin]]].

          feed (workload_bound_all_jobs_from_tsk next).
            by apply mem_nth; destruct sorted_jobs.
          intros [NEXTarr [NEXTtsk [_ NEXTin]]].

          (* Use the sporadic task model to conclude that cur and next are separated
             by at least (task_period tsk) units. Of course this only holds if cur != next.
             Since we don't know much about the list (except that it's sorted), we must
             also prove that it doesn't contain duplicates. *)

          assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) job_arrival next).
          {
            apply H_sporadic_tasks; try (by done).
            unfold cur, next, not; intro EQ; move: EQ ⇒ /eqP EQ.
            rewrite nth_uniq in EQ; first by move: EQ ⇒ /eqP EQ; intuition.
              by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
              by destruct sorted_jobs; ins.
              by rewrite sort_uniq -/scheduled_jobs filter_uniq // undup_uniq.
              by rewrite CURtsk NEXTtsk.
          }
          by rewrite subh3 // addnC -CURtsk.
        Qed.

        (* Prove that n_k is at least the number of the middle jobs *)
        Lemma workload_bound_n_k_covers_middle_jobs :
          n_k num_mid_jobs.
        Proof.
          rename H_valid_task_parameters into PARAMS.
          unfold is_valid_sporadic_task in *; des.
          rewrite leqNgt; apply/negP; unfold not; intro LTnk.
          assert (DISTmax: job_arrival j_lst - job_arrival j_fst delta + task_period tsk).
          {
            apply leq_trans with (n := n_k.+2 × task_period tsk).
            {
              rewrite -addn1 mulnDl mul1n leq_add2r.
              apply leq_trans with (n := delta + task_jitter tsk + R_tsk - task_cost tsk);
                first by rewrite -addnBA // -addnA leq_addr.
              by apply ltnW, ltn_ceil, PARAMS0.
            }
            apply leq_trans with (num_mid_jobs.+1 × task_period tsk);
              first by rewrite leq_mul2r; apply/orP; right.
            by apply workload_bound_many_periods_in_between.
          }
          rewrite <- leq_add2r with (p := job_arrival j_fst) in DISTmax.
          rewrite addnC subh1 in DISTmax; last first.
          {
            unfold j_fst, j_lst; rewrite -[_.+1]add0n.
            apply prev_le_next; last by rewrite H_at_least_two_jobs add0n leqnn.
            by ins; apply workload_bound_jobs_ordered_by_arrival.
          }
          rewrite -subnBA // subnn subn0 in DISTmax.
          rewrite [delta + task_period tsk]addnC addnA in DISTmax.
          have BEFOREt2 := workload_bound_last_job_arrives_before_end_of_interval.
          generalize BEFOREt2; move: BEFOREt2; rewrite {1}ltnNge; move ⇒ /negP BEFOREt2'.
          intros BEFOREt2; apply BEFOREt2'; clear BEFOREt2'.
          apply leq_trans with (n := job_arrival j_fst + task_deadline tsk + delta);
            last first.
          {
            apply leq_trans with (n := job_arrival j_fst + task_period tsk + delta); last by done.
            by rewrite leq_add2r leq_add2l; apply H_constrained_deadline.
          }
          {
            unfold t2; rewrite leq_add2r.
            apply leq_trans with (n := job_arrival j_fst + task_jitter tsk + R_tsk);
              last by rewrite -addnA leq_add2l.
            by apply workload_bound_response_time_of_first_job_inside_interval.
          }
        Qed.

        (* If n_k = num_mid_jobs, then the workload bound holds. *)
        Lemma workload_bound_n_k_equals_num_mid_jobs :
          num_mid_jobs = n_k
          service_during sched j_lst t1 t2 +
            service_during sched j_fst t1 t2 +
            \sum_(0 i < num_mid_jobs)
             service_during sched (nth elem sorted_jobs i.+1) t1 t2
           workload_bound.
        Proof.
          rename H_valid_task_parameters into PARAMS.
          unfold is_valid_sporadic_task in *; des.
          unfold workload_bound, W_jitter; fold n_k.
          moveNK; rewrite -NK.
          apply leq_add;
            last by apply workload_bound_service_of_middle_jobs.
          apply leq_trans with (n := delta + task_jitter tsk + R_tsk -
                                             (job_arrival j_lst - (job_arrival j_fst))).
          {
            rewrite addnC -workload_bound_simpl_expression_with_first_and_last.
            by apply workload_bound_service_of_first_and_last_jobs.
          }
          rewrite leq_min; apply/andP; split.
          {
            rewrite leq_subLR [_ + task_cost _]addnC -leq_subLR.
            apply leq_trans with (num_mid_jobs.+1 × task_period tsk);
              last by apply workload_bound_many_periods_in_between.
            rewrite NK ltnW // -ltn_divLR; last by apply PARAMS0.
            unfold n_k, max_jobs_jitter, div_floor.
            by unfold n_k, max_jobs_jitter, div_floor.
          }
          {
            rewrite -subnDA; apply leq_sub2l.
            apply leq_trans with (n := num_mid_jobs.+1 × task_period tsk);
              last by apply workload_bound_many_periods_in_between.
            rewrite -addn1 addnC mulnDl mul1n.
            by rewrite leq_add2l; last by apply PARAMS3.
          }
        Qed.

        (* If n_k = num_mid_jobs + 1, then the workload bound holds. *)
        Lemma workload_bound_n_k_equals_num_mid_jobs_plus_1 :
          num_mid_jobs.+1 = n_k
          service_during sched j_lst t1 t2 +
            service_during sched j_fst t1 t2 +
            \sum_(0 i < num_mid_jobs)
             service_during sched (nth elem sorted_jobs i.+1) t1 t2
           workload_bound.
        Proof.
          have MID := workload_bound_service_of_middle_jobs.
          rename H_jobs_have_valid_parameters into JOBPARAMS.
          unfold valid_sporadic_job_with_jitter in *; des.
          unfold workload_bound, W_jitter; fold n_k.
          moveNK; rewrite -NK.
          rewrite -{2}addn1 mulnDl mul1n [_× _ + _]addnC addnA addn_minl.
          apply leq_add; last first.
          apply MID.
          rewrite leq_min; apply/andP; split.
          {
            assert (SIZE: 0 < size sorted_jobs).
              by rewrite H_at_least_two_jobs.
            have INfst := workload_bound_j_fst_is_job_of_tsk SIZE elem;
            have INlst := workload_bound_j_lst_is_job_of_tsk; des.
            have PARAMSfst := JOBPARAMS j_fst INfst; des.
            have PARAMSlst := JOBPARAMS j_lst INlst; des.
            by apply leq_add; apply cumulative_service_le_task_cost with
                      (task_deadline0 := task_deadline) (job_cost0 := job_cost)
                      (job_deadline0 := job_deadline) (job_task0 := job_task).
          }
          {
            rewrite subnAC subnK; last first.
            {
              assert (TMP: delta + task_jitter tsk + R_tsk = task_cost tsk + (delta + task_jitter tsk + R_tsk - task_cost tsk));
                first by rewrite subnKC; [by ins | by rewrite -[task_cost _]add0n; apply leq_add].
              rewrite TMP; clear TMP.
              rewrite -{1}[task_cost _]addn0 -addnBA NK; [by apply leq_add | by apply leq_trunc_div].
            }
            apply leq_trans with (n := delta + task_jitter tsk + R_tsk - num_mid_jobs.+1 × task_period tsk);
              last by rewrite leq_sub2r // leq_add2r leq_addr.
            apply leq_trans with (delta + task_jitter tsk +R_tsk - (job_arrival j_lst - job_arrival j_fst)).
            {
              rewrite addnC -workload_bound_simpl_expression_with_first_and_last.
              by apply workload_bound_service_of_first_and_last_jobs.
            }
            {
              by apply leq_sub2l, workload_bound_many_periods_in_between.
            }
          }
        Qed.

      End WorkloadTwoOrMoreJobs.

      (* Using the lemmas above, we prove the main theorem about the workload bound. *)
      Theorem workload_bounded_by_W :
        workload_of tsk t1 (t1 + delta) workload_bound.
      Proof.
        unfold workload_of, workload_bound, W_jitter in *; ins; des.
        fold n_k.

        (* Use the definition of workload based on list of jobs. *)
        rewrite workload_eq_workload_joblist.

        (* Now we order the list by job arrival time. *)
        rewrite workload_bound_simpl_by_sorting_scheduled_jobs.

        (* Next, we show that the workload bound holds if n_k
           is no larger than the number of interferings jobs. *)

        destruct (size sorted_jobs n_k) eqn:NUM;
          first by apply workload_bound_holds_for_at_most_n_k_jobs.
        apply negbT in NUM; rewrite -ltnNge in NUM.

        (* Find some dummy element to use in the nth function *)
        assert (EX: elem: Job, True).
          destruct sorted_jobs; [ by rewrite ltn0 in NUM | by s].
        destruct EX as [elem _].

        (* Now we index the sum to access the first and last elements. *)
        rewrite (big_nth elem).

        (* First, we show that the bound holds for an empty list of jobs. *)
        destruct (size sorted_jobs) as [| n] eqn:SIZE;
          first by rewrite big_geq.

        (* Then, we show the same for a singleton set of jobs. *)
        destruct n as [| num_mid_jobs];
          first by apply workload_bound_holds_for_a_single_job; rewrite SIZE.

        (* Knowing that we have at least two elements, we take first and last out of the sum *)
        rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
        rewrite addnA addnC addnA.

        (* There are two cases to be analyze since n <= n_k < n + 2,
           where n is the number of middle jobs. *)

        have NK := workload_bound_n_k_covers_middle_jobs num_mid_jobs SIZE elem.
        move: NK; rewrite leq_eqVlt orbC leq_eqVlt; move ⇒ /orP [NK | /eqP NK].
        move: NK ⇒ /orP [/eqP NK | NK]; last by rewrite ltnS leqNgt NK in NUM.
        {
          (* Case 1: n_k = n + 1, where n is the number of middle jobs. *)
          by apply (workload_bound_n_k_equals_num_mid_jobs_plus_1 num_mid_jobs).
        }
        {
          (* Case 2: n_k = n, where n is the number of middle jobs. *)
          by apply (workload_bound_n_k_equals_num_mid_jobs num_mid_jobs).
        }
      Qed.

    End MainProof.

  End ProofWorkloadBound.

End WorkloadBoundJitter.