Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.facts.model.rbf. Require Export prosa.analysis.facts.model.task_arrivals. Require Export prosa.analysis.facts.model.task_schedule. Require Export prosa.analysis.facts.model.sequential. Require Export prosa.analysis.abstract.ideal.abstract_rta. Require Export prosa.analysis.abstract.IBF.task. (** * Abstract Response-Time Analysis with sequential tasks *) (** In this section we propose the general framework for response-time analysis (RTA) of uni-processor scheduling of real-time tasks with arbitrary arrival models and sequential tasks. *) (** We prove that the maximum among the solutions of the response-time bound recurrence for some set of parameters is a response-time bound for [tsk]. Note that in this section we _do_ rely on the hypothesis about task sequentiality. This allows us to provide a more precise response-time bound function, since jobs of the same task will be executed strictly in the order they arrive. *) Section Sequential_Abstract_RTA. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskRunToCompletionThreshold Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. Context `{JobPreemptable Job}. (** Consider any kind of ideal uni-processor state model. *) Context `{PState : ProcessorState Job}. Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState. Hypothesis H_unit_service_proc_model : unit_service_proc_model PState. Hypothesis H_ideal_progress_proc_model : ideal_progress_proc_model PState. (** Consider any valid arrival sequence with consistent, non-duplicate arrivals...*) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** ... and any ideal schedule of this arrival sequence. *) Variable sched : schedule PState. Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq. (** ... where jobs do not execute before their arrival nor after completion. *) Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched. Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched. (** Assume that the job costs are no larger than the task costs. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** Consider an arbitrary task set. *) Variable ts : list Task. (** Let [tsk] be any task in ts that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Consider a valid preemption model ... *) Hypothesis H_valid_preemption_model : valid_preemption_model arr_seq sched. (** ...and a valid task run-to-completion threshold function. That is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *) Hypothesis H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold arr_seq tsk. (** Let [max_arrivals] be a family of valid arrival curves, i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals [0] for the empty interval [delta = 0]. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Assume we are provided with abstract functions for interference and interfering workload. *) Context `{Interference Job}. Context `{InterferingWorkload Job}. (** We assume that the schedule is work-conserving. *) Hypothesis H_work_conserving : work_conserving arr_seq sched. (** Unlike the previous theorem [uniprocessor_response_time_bound_ideal], we assume that (1) tasks are sequential, moreover (2) functions interference and interfering_workload are consistent with the hypothesis of sequential tasks. *) Hypothesis H_sequential_tasks : sequential_tasks arr_seq sched. Hypothesis H_interference_and_workload_consistent_with_sequential_tasks : interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk. (** Assume we have a constant [L] that bounds the busy interval of any of [tsk]'s jobs. *) Variable L : duration. Hypothesis H_busy_interval_exists : busy_intervals_are_bounded_by arr_seq sched tsk L. (** Next, we assume that [task_IBF] is a bound on interference incurred by the task. *) Variable task_IBF : duration -> duration -> duration. Hypothesis H_task_interference_is_bounded : task_interference_is_bounded_by arr_seq sched tsk task_IBF. (** Let's define some local names for clarity. *) Let task_rbf := task_request_bound_function tsk. Let arrivals_between := arrivals_between arr_seq. (** Given any job [j] of task [tsk] that arrives exactly [A] units after the beginning of the busy interval, the bound on the total interference incurred by [j] within an interval of length [Δ] is no greater than [task_rbf (A + ε) - task_cost tsk + task's IBF Δ]. Note that in case of sequential tasks the bound consists of two parts: (1) the part that bounds the interference received from other jobs of task [tsk] -- [task_rbf (A + ε) - task_cost tsk] and (2) any other interference that is bounded by [task_IBF(tsk, A, Δ)]. *) Let total_interference_bound (A Δ : duration) := task_rbf (A + ε) - task_cost tsk + task_IBF A Δ. (** Note that since we consider the modified interference bound function, the search space has also changed. One can see that the new search space is guaranteed to include any A for which [task_rbf (A) ≠ task_rbf (A + ε)], since this implies the fact that [total_interference_bound (A, Δ) ≠ total_interference_bound (A + ε, Δ)]. *) Let is_in_search_space_seq := is_in_search_space L total_interference_bound. (** Consider any value [R], and assume that for any relative arrival time [A] from the search space there is a solution [F] of the response-time recurrence that is bounded by [R]. In contrast to the formula in "non-sequential" Abstract RTA, assuming that tasks are sequential leads to a more precise response-time bound. Now we can explicitly express the interference caused by other jobs of the task under consideration. To understand the right part of the fix-point in the equation, it is helpful to note that the bound on the total interference ([bound_of_total_interference]) is equal to [task_rbf (A + ε) - task_cost tsk + task_IBF tsk A Δ]. Besides, a job must receive enough service to become non-preemptive [task_lock_in_service tsk]. The sum of these two quantities is exactly the right-hand side of the equation. *) Variable R : duration. Hypothesis H_R_is_maximum_seq : forall (A : duration), is_in_search_space_seq A -> exists (F : duration), A + F >= (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + task_IBF A (A + F) /\ R >= F + (task_cost tsk - task_rtct tsk). (** Since we are going to use the [uniprocessor_response_time_bound_ideal] theorem to prove the theorem of this section, we have to show that all the hypotheses are satisfied. Namely, we need to show that [H_R_is_maximum_seq] implies [H_R_is_maximum]. Note that the fact that hypotheses [H_sequential_tasks, H_i_w_are_task_consistent and H_task_interference_is_bounded_by] imply [H_job_interference_is_bounded] is proven in the file [analysis/abstract/IBF/task]. *) (** In this section, we prove that [H_R_is_maximum_seq] implies [H_R_is_maximum]. *) Section MaxInSeqHypothesisImpMaxInNonseqHypothesis. (** To rule out pathological cases with the [H_R_is_maximum_seq] equation (such as [task_cost tsk] being greater than [task_rbf (A + ε)]), we assume that the arrival curve is non-pathological. *) Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** For simplicity, let's define a local name for the search space. *) Let is_in_search_space A := is_in_search_space L total_interference_bound A. (** We prove that [H_R_is_maximum] holds. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop

forall A : duration, is_in_search_space A -> exists F : duration, task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop

forall A : duration, is_in_search_space A -> exists F : duration, task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A

exists F : duration, task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A

exists F : duration, task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

exists F : duration, task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= A + F
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_rtct tsk + (task_rbf (A + 1) - task_cost tsk + task_IBF A (A + F)) <= task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_rtct tsk + (task_rbf (A + 1) - task_cost tsk) <= task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_cost tsk <= task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R
task_rtct tsk + task_rbf (A + 1) - task_cost tsk <= task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_cost tsk <= task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_cost tsk <= task_rbf 1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R
task_rbf 1 <= task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_cost tsk <= task_rbf 1
exact: task_rbf_1_ge_task_cost.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf 1 <= task_rbf (A + 1)
by apply: task_rbf_monotone => //; rewrite addn1.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= [eta search_space.is_in_search_space L total_interference_bound]: nat -> Prop
PRT1: task_rtc_bounded_by_cost tsk
PRT2: job_respects_task_rtc arr_seq tsk
A: duration
INSP: is_in_search_space A
F: duration
FIX: task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F
LE: F + (task_cost tsk - task_rtct tsk) <= R

task_rtct tsk + task_rbf (A + 1) - task_cost tsk <= task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)
by rewrite subnBA; auto; rewrite addnC. Qed. End MaxInSeqHypothesisImpMaxInNonseqHypothesis. (** We apply the [uniprocessor_response_time_bound_ideal] theorem, and using the lemmas proven earlier, we prove that all the requirements are satisfied. So, [R] is a response-time bound. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_response_time_bound sched j R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_interference_is_bounded_by arr_seq sched tsk ?interference_bound_function (relative_arrival_time_of_job_is_A sched)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
forall A : nat, is_in_search_space L ?interference_bound_function A -> exists F : nat, task_rtct tsk + ?interference_bound_function A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_interference_is_bounded_by arr_seq sched tsk ?interference_bound_function (relative_arrival_time_of_job_is_A sched)
exact: task_IBF_implies_job_IBF => //.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

forall A : nat, is_in_search_space L (fun A0 R : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_IBF A0 R) A -> exists F : nat, task_rtct tsk + (fun A0 R : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_IBF A0 R) A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
H4: JobPreemptable Job
PState: ProcessorState Job
H_uniprocessor_proc_model: uniprocessor_model PState
H_unit_service_proc_model: unit_service_proc_model PState
H_ideal_progress_proc_model: ideal_progress_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H6: Interference Job
H7: InterferingWorkload Job
H_work_conserving: work_conserving arr_seq sched
H_sequential_tasks: sequential_tasks arr_seq sched
H_interference_and_workload_consistent_with_sequential_tasks: interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
L: duration
H_busy_interval_exists: busy_intervals_are_bounded_by arr_seq sched tsk L
task_IBF: duration -> duration -> duration
H_task_interference_is_bounded: task_interference_is_bounded_by arr_seq sched tsk task_IBF
task_rbf:= task_request_bound_function tsk: duration -> nat
arrivals_between:= arrival_sequence.arrivals_between arr_seq: instant -> instant -> seq Job
total_interference_bound:= fun A Δ : duration => task_rbf (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
is_in_search_space_seq:= is_in_search_space L total_interference_bound: nat -> Prop
R: duration
H_R_is_maximum_seq: forall A : duration, is_in_search_space_seq A -> exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

forall A : nat, is_in_search_space L (fun A0 R : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_IBF A0 R) A -> exists F : nat, task_rtct tsk + (fun A0 R : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_IBF A0 R) A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
exact: max_in_seq_hypothesis_implies_max_in_nonseq_hypothesis => //. } Qed. End Sequential_Abstract_RTA.