Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.abstract.search_space. Require Export prosa.analysis.definitions.blocking_bound.fp. (** * Abstract Search Space is a Subset of Restricted Supply FP Search Space *) (** A response-time analysis usually involves solving the response-time equation for various relative arrival times (w.r.t. the beginning of the corresponding busy interval) of a job under analysis. To reduce the time complexity of the analysis, the state of the art uses the notion of a search space. Intuitively, this corresponds to all "interesting" arrival offsets that the job under analysis might have with regard to the beginning of its busy window. In this file, we prove that the search space derived from the aRTA theorem is a subset of the search space for the FP scheduling policy with restricted supply. In other words, by solving the response-time equation for points in the FP search space, one also checks all points in the aRTA search space, which makes FP compatible with aRTA w.r.t. the search space. *) Section SearchSpaceSubset. (** Consider any type of tasks. *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskMaxNonpreemptiveSegment Task}. (** Consider an FP policy that indicates a higher-or-equal priority relation. *) Context {FP : FP_policy Task}. (** Consider an arbitrary task set [ts]. *) Variable ts : list Task. (** Let [max_arrivals] be a family of valid arrival curves, i.e., for any task [tsk] in [ts] [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals [0] for the empty interval [delta = 0]. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** Let [tsk] be any task in [ts] that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Let's define some local names for clarity. *) Let task_rbf := task_request_bound_function tsk. Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk. (** Let [L] be an arbitrary positive constant. Typically, [L] denotes an upper bound on the length of a busy interval of a job of [tsk]. In this file, however, [L] can be any positive constant. *) Variable L : duration. Hypothesis H_L_positive : 0 < L. (** For the fixed-priority scheduling policy, the search space is defined as the set of offsets below [L] where the RBF of the task under analysis makes a step. *) Definition is_in_search_space A := (A < L) && (task_rbf A != task_rbf (A + ε)). (** To rule out pathological cases with the search space, we assume that the task cost is positive and the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** For brevity, let us introduce a shorthand for an intra-IBF (used by aRTA). The abstract search space is derived via intra-IBF. *) Let intra_IBF (A F : duration) := task_rbf (A + ε) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F). (** Then, abstract RTA's standard search space is a subset of the computation-oriented version defined above. *)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat

forall A : nat, search_space.is_in_search_space L intra_IBF A -> is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat

forall A : nat, search_space.is_in_search_space L intra_IBF A -> is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
ZERO: A = 0

(A < L) && (task_rbf A != task_rbf (A + 1))
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
NEQ: intra_IBF (A - 1) x <> intra_IBF A x
(A < L) && (task_rbf A != task_rbf (A + 1))
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
ZERO: A = 0

(A < L) && (task_rbf A != task_rbf (A + 1))
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat

task_rbf 0 != task_rbf (0 + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat

0 < task_request_bound_function tsk 1
exact: task_rbf_epsilon_gt_0.
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
NEQ: intra_IBF (A - 1) x <> intra_IBF A x

(A < L) && (task_rbf A != task_rbf (A + 1))
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
NEQ: intra_IBF (A - 1) x <> intra_IBF A x

(A < L) && (task_rbf A != task_rbf (A + 1))
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: intra_IBF (A - 1) x < intra_IBF A x

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: intra_IBF A x < intra_IBF (A - 1) x
task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: intra_IBF (A - 1) x < intra_IBF A x

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: task_rbf (A - 1 + 1) - task_cost tsk < task_rbf (A + 1) - task_cost tsk

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: task_rbf (A - 1 + 1) - task_cost tsk < task_rbf (A + 1) - task_cost tsk
F: forall a b c : nat, a - c < b - c -> a < b

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
F: forall a b c : nat, a - c < b - c -> a < b
LT: task_rbf A < task_rbf (A + 1)

task_rbf A != task_rbf (A + 1)
by rewrite neq_ltn; apply/orP; left.
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: intra_IBF A x < intra_IBF (A - 1) x

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: intra_IBF A x < intra_IBF (A - 1) x

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: task_rbf (A + 1) - task_cost tsk < task_rbf (A - 1 + 1) - task_cost tsk

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
LT: task_rbf (A + 1) - task_cost tsk < task_rbf (A - 1 + 1) - task_cost tsk
F: forall a b c : nat, a - c < b - c -> a < b

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskMaxNonpreemptiveSegment Task
FP: FP_policy Task
ts: seq Task
H1: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
task_rbf:= task_request_bound_function tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
intra_IBF:= fun A F : duration => task_rbf (A + 1) - task_cost tsk + (blocking_bound ts tsk + total_ohep_rbf F): duration -> duration -> nat
A: nat
GTA: 0 < A
LTA: A < L
x: nat
LTx: x < L
F: forall a b c : nat, a - c < b - c -> a < b
LT: task_rbf (A + 1) < task_rbf A

task_rbf A != task_rbf (A + 1)
by rewrite neq_ltn; apply/orP; right. } } Qed. End SearchSpaceSubset.