Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.facts.behavior.supply. Require Export prosa.model.task.concept. (** In this section, we prove some useful facts about SBF. *) Section SupplyBoundFunctionLemmas. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs. *) Context {Job : JobType}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any kind of unit-supply processor state model, ... *) Context `{PState : ProcessorState Job}. Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState. (** ... any valid arrival sequence, ... *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrivals : valid_arrival_sequence arr_seq. (** ... and any schedule. *) Variable sched : schedule PState. (** In the following section, we prove a lemma about switching a predicate inside of [valid_pred_sbf]. *) Section SBFChangePred. (** Consider an SBF ... *) Context {SBF : SupplyBoundFunction}. (** ... and two predicates [P1] and [P2] such that, for any job [j] and a time interval <<[t1, t2)>>, [P2 j t1 t2] implies [P1 j t1 t2]. *) Variables P1 P2 : Job -> instant -> instant -> Prop. Hypothesis H_p2_implies_p1 : forall j t1 t2, arrives_in arr_seq j -> P2 j t1 t2 -> P1 j t1 t2. (** Then if [SBF] is a valid SBF w.r.t. predicate [P1], then [SBF] is a valid SBF w.r.t. predicate [P2]. *)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
SBF: SupplyBoundFunction
P1, P2: Job -> instant -> instant -> Prop
H_p2_implies_p1: forall (j : Job) (t1 t2 : instant), arrives_in arr_seq j -> P2 j t1 t2 -> P1 j t1 t2

valid_pred_sbf arr_seq sched P1 SBF -> valid_pred_sbf arr_seq sched P2 SBF
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
SBF: SupplyBoundFunction
P1, P2: Job -> instant -> instant -> Prop
H_p2_implies_p1: forall (j : Job) (t1 t2 : instant), arrives_in arr_seq j -> P2 j t1 t2 -> P1 j t1 t2

valid_pred_sbf arr_seq sched P1 SBF -> valid_pred_sbf arr_seq sched P2 SBF
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
SBF: SupplyBoundFunction
P1, P2: Job -> instant -> instant -> Prop
H_p2_implies_p1: forall (j : Job) (t1 t2 : instant), arrives_in arr_seq j -> P2 j t1 t2 -> P1 j t1 t2
VAL: valid_pred_sbf arr_seq sched P1 SBF

pred_sbf_respected arr_seq sched P2 SBF
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
SBF: SupplyBoundFunction
P1, P2: Job -> instant -> instant -> Prop
H_p2_implies_p1: forall (j : Job) (t1 t2 : instant), arrives_in arr_seq j -> P2 j t1 t2 -> P1 j t1 t2
VAL: valid_pred_sbf arr_seq sched P1 SBF
j: Job
t1, t2: instant
ARR: arrives_in arr_seq j
P2j: P2 j t1 t2
t: instant
NEQ: t1 <= t <= t2

SBF (t - t1) <= supply_during sched t1 t
by eapply VAL => //. Qed. End SBFChangePred. (** Consider an arbitrary predicate on jobs and time intervals. *) Variable P : Job -> instant -> instant -> Prop. (** Consider a supply-bound function [SBF] that is valid w.r.t. the predicate [P]. That is, (1) [SBF 0 = 0] and (2) for any job [j], an interval <<[t1, t2)>> satisfying [P j], and a subinterval <<[t1, t) ⊆ [t1, t2)>>, the supply produced during the time interval <<[t1, t)>> is at least [SBF (t - t1)]. *) Context {SBF : SupplyBoundFunction}. Hypothesis H_valid_SBF : valid_pred_sbf arr_seq sched P SBF. (** In this section, we show a simple upper bound on the blackout during an interval of length [Δ]. *) Section BlackoutBound. (** Consider any job [j]. *) Variable j : Job. Hypothesis H_arrives_in : arrives_in arr_seq j. (** Consider an interval <<[t1, t2)>> satisfying [P j]. *) Variables t1 t2 : instant. Hypothesis H_P_interval : P j t1 t2. (** Consider an arbitrary duration [Δ] such that [t1 + Δ <= t2]. *) Variable Δ : duration. Hypothesis H_subinterval : t1 + Δ <= t2. (** We show that the total blackout time during an interval of length [Δ] is bounded by [Δ - SBF Δ]. *)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

blackout_during sched t1 (t1 + Δ) <= Δ - SBF Δ
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

blackout_during sched t1 (t1 + Δ) <= Δ - SBF Δ
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

SBF Δ <= supply_during sched t1 (t1 + Δ)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

SBF Δ <= SBF (t1 + Δ - t1)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
arrives_in arr_seq ?Goal0
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
P ?Goal0 t1 ?Goal2
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
t1 <= t1 + Δ <= ?Goal2
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

SBF Δ <= SBF (t1 + Δ - t1)
by have -> : (t1 + Δ) - t1 = Δ by lia.
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

arrives_in arr_seq ?Goal
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
P ?Goal t1 ?Goal1
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
t1 <= t1 + Δ <= ?Goal1
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

arrives_in arr_seq ?Goal
by apply H_arrives_in.
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

P j t1 ?Goal
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2
t1 <= t1 + Δ <= ?Goal
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

P j t1 ?Goal
by eapply H_P_interval.
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

t1 <= t1 + Δ <= t2
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
j: Job
H_arrives_in: arrives_in arr_seq j
t1, t2: instant
H_P_interval: P j t1 t2
Δ: duration
H_subinterval: t1 + Δ <= t2

t1 <= t1 + Δ <= t2
lia. } Qed. End BlackoutBound. (** In the following section, we prove a few facts about _unit_ SBF. *) Section UnitSupplyBoundFunctionLemmas. (** In addition, let us assume that [SBF] is a unit-supply SBF. That is, [SBF] makes steps of at most one. *) Hypothesis H_unit_SBF : unit_supply_bound_function SBF. (** We prove that the complement of such an SBF (i.e., [fun Δ => Δ - SBF Δ]) is monotone. *)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
H_unit_SBF: unit_supply_bound_function SBF

forall Δ1 Δ2 : nat, Δ1 <= Δ2 -> Δ1 - SBF Δ1 <= Δ2 - SBF Δ2
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
H_unit_SBF: unit_supply_bound_function SBF

forall Δ1 Δ2 : nat, Δ1 <= Δ2 -> Δ1 - SBF Δ1 <= Δ2 - SBF Δ2
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
H_unit_SBF: unit_supply_bound_function SBF
Δ1, k: nat

Δ1 - SBF Δ1 <= Δ1 + k - SBF (Δ1 + k)
Task: TaskType
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
H_unit_supply_proc_model: unit_supply_proc_model PState
arr_seq: arrival_sequence Job
H_valid_arrivals: valid_arrival_sequence arr_seq
sched: schedule PState
P: Job -> instant -> instant -> Prop
SBF: SupplyBoundFunction
H_valid_SBF: valid_pred_sbf arr_seq sched P SBF
H_unit_SBF: unit_supply_bound_function SBF
Δ1, δ: nat
IHδ: Δ1 - SBF Δ1 <= Δ1 + δ - SBF (Δ1 + δ)

Δ1 - SBF Δ1 <= Δ1 + δ.+1 - SBF (Δ1 + δ.+1)
by rewrite (leqRW IHδ) addnS (leqRW (H_unit_SBF _)); lia. Qed. End UnitSupplyBoundFunctionLemmas. End SupplyBoundFunctionLemmas.