Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.facts.model.arrival_curves. Require Export prosa.analysis.definitions.job_properties. Require Export prosa.analysis.definitions.request_bound_function. Require Export prosa.analysis.definitions.schedulability. Require Export prosa.util.tactics. Require Export prosa.analysis.definitions.workload.bounded. (** * Facts about Request Bound Functions (RBFs) *) (** In this file, we prove some lemmas about request bound functions. *) (** ** RBF is a Bound on Workload *) (** First, we show that a task's RBF is indeed an upper bound on its workload. *) Section ProofWorkloadBound. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any arrival sequence with consistent, non-duplicate arrivals, ... *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** ... any schedule corresponding to this arrival sequence, ... *) Context {PState : ProcessorState Job}. Variable sched : schedule PState. Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq. (** ... and an FP policy that indicates a higher-or-equal priority relation. *) Context `{FP_policy Task}. (** Further, consider a task set [ts]... *) Variable ts : seq Task. (** ... and let [tsk] be any task in [ts]. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Assume that the job costs are no larger than the task costs ... *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** ... and that all jobs come from the task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Let [max_arrivals] be any arrival bound for task-set [ts]. *) Context `{MaxArrivals Task}. Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts. (** Next, recall the notions of total workload of jobs... *) Let total_workload t1 t2 := workload_of_jobs predT (arrivals_between arr_seq t1 t2). (** ... and the workload of jobs of the same task as job j. *) Let task_workload t1 t2 := workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2). (** Finally, let us define some local names for clarity. *) Let rbf := task_request_bound_function. Let total_rbf := total_request_bound_function ts. Let total_hep_rbf := total_hep_request_bound_function_FP ts. Let total_ohep_rbf := total_ohep_request_bound_function_FP ts. (** In this section, we prove that the workload of all jobs is no larger than the request bound function. *) Section WorkloadIsBoundedByRBF. (** Consider any time [t] and any interval of length [Δ]. *) Variable t : instant. Variable Δ : instant. (** First, we show that workload of task [tsk] is bounded by the number of arrivals of the task times the cost of the task. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

task_workload t (t + Δ) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

task_workload t (t + Δ) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = [::]

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l
\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = [::]

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
TASK: [seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j] = [::]

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
by rewrite -big_filter !TASK !big_nil.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l

\sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk i) job_cost i <= \big[ssrnat_addn__canonical__Monoid_AddLaw/0]_(i <- [ seq j <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk j]) ssrnat_muln__canonical__Monoid_MulLaw (task_cost tsk) 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l

\sum_(i <- arrivals_between arr_seq t (t + Δ) | (i \in arrivals_between arr_seq t (t + Δ)) && job_of_task tsk i) job_cost i <= \sum_(i <- arrivals_between arr_seq t (t + Δ) | (i \in arrivals_between arr_seq t (t + Δ)) && job_of_task tsk i) task_cost tsk * 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l

forall i : Job, (i \in arrivals_between arr_seq t (t + Δ)) && job_of_task tsk i -> job_cost i <= task_cost tsk * 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l
j': Job
IN: j' \in arrivals_between arr_seq t (t + Δ)
TSKj': job_of_task tsk j'

job_cost j' <= task_cost tsk * 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l
j': Job
IN: j' \in arrivals_between arr_seq t (t + Δ)
TSKj': job_of_task tsk j'

job_cost j' <= task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l
j': Job
IN: j' \in arrivals_between arr_seq t (t + Δ)
TSKj': job_task j' = tsk

job_cost j' <= task_cost (job_task j')
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
s: Job
l: seq Job
TASK: task_arrivals_between arr_seq tsk t (t + Δ) = s :: l
j': Job
IN: j' \in arrivals_between arr_seq t (t + Δ)
TSKj': job_task j' = tsk

arrives_in arr_seq j'
by apply in_arrivals_implies_arrived in IN. } Qed. (** As a corollary, we prove that workload of task is no larger the than task request bound function. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

task_workload t (t + Δ) <= rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

task_workload t (t + Δ) <= rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + Δ) <= rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

number_of_task_arrivals arr_seq tsk t (t + Δ) <= max_arrivals tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

number_of_task_arrivals arr_seq tsk t (t + Δ) <= max_arrivals tsk (t + Δ - t)
by apply H_is_arrival_bound; last rewrite leq_addr. Qed. (** Next, we prove that total workload of tasks is no larger than the total request bound function. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

total_workload t (t + Δ) <= total_rbf Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant

total_workload t (t + Δ) <= total_rbf Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

total_workload t (t + Δ) <= total_rbf Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

total_workload t (t + Δ) <= \sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
\sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0 <= total_rbf Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

total_workload t (t + Δ) <= \sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

workload_of_jobs predT (arrivals_between arr_seq t (t + Δ)) <= \sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
EXCHANGE: forall (T : Type) (y : T) (t : Monoid.com_law y) (T0 T1 : Type) (l : seq T0) (l0 : seq T1) (p : pred T0) (p0 : T0 -> pred T1) (F : T0 -> T1 -> T), (forall (i : T0) (j : T1), p i -> p0 i j -> predT j) -> \big[t/y]_(i <- l | p i) \big[t/y]_(j <- l0 | p0 i j) F i j = \big[t/y]_(j <- l0 | predT j) \big[t/y]_(i <- l | p i && p0 i j) F i j

workload_of_jobs predT (arrivals_between arr_seq t (t + Δ)) <= \sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

workload_of_jobs predT (arrivals_between arr_seq t (t + Δ)) <= \sum_(j <- l) \sum_(i <- ts | job_task j == i) job_cost j
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

\sum_(i <- l | (i \in l) && predT i) job_cost i <= \sum_(i <- l | (i \in l) && true) \sum_(i0 <- ts | job_task i == i0) job_cost i
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
j0: Job
IN0: j0 \in l
HP0: true

job_cost j0 <= \sum_(i <- ts | job_task j0 == i) job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
j0: Job
IN0: j0 \in l
HP0: true

job_cost j0 <= (if job_task j0 == job_task j0 then job_cost j0 else 0) + \sum_(y <- rem (T:=Task) (job_task j0) ts) (if job_task j0 == y then job_cost j0 else 0)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
j0: Job
IN0: j0 \in l
HP0: true
job_task j0 \in ts
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
j0: Job
IN0: j0 \in l
HP0: true

job_cost j0 <= (if job_task j0 == job_task j0 then job_cost j0 else 0) + \sum_(y <- rem (T:=Task) (job_task j0) ts) (if job_task j0 == y then job_cost j0 else 0)
by rewrite eq_refl; apply leq_addr.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
j0: Job
IN0: j0 \in l
HP0: true

job_task j0 \in ts
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job

\sum_(tsk' <- ts) \sum_(j0 <- l | job_task j0 == tsk') job_cost j0 <= total_rbf Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

\sum_(j0 <- l | job_task j0 == tsk0) job_cost j0 <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

\sum_(j0 <- l | job_task j0 == tsk0) job_cost j0 <= task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true
task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

\sum_(j0 <- l | job_task j0 == tsk0) job_cost j0 <= task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

\sum_(j0 <- l | job_task j0 == tsk0) job_cost j0 <= \sum_(i <- l | job_of_task tsk0 i) task_cost tsk0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true
j0: Job
IN0: j0 \in l

job_cost j0 <= task_cost (job_task j0)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true
j0: Job
IN0: j0 \in l

arrives_in arr_seq j0
by apply in_arrivals_implies_arrived in IN0.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= max_arrivals tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
l:= arrivals_between arr_seq t (t + Δ): seq Job
tsk0: Task
INtsk0: tsk0 \in ts
HP0: true

size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= max_arrivals tsk0 (t + Δ - t)
by apply H_is_arrival_bound; last rewrite leq_addr. } Qed. (** Next, we consider any job [j] of [tsk]. *) Variable j : Job. Hypothesis H_job_of_tsk : job_of_task tsk j. (** We prove that the sum of job cost of jobs whose corresponding task satisfies a predicate [pred] is bounded by the RBF of these tasks. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

forall pred : pred Task, \sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

forall pred : pred Task, \sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- [seq x <- ts | pred x]) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk') job_cost j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
\sum_(tsk' <- [ seq x <- ts | pred x]) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk') job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- [seq x <- ts | pred x]) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk') job_cost j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(tsk' <- [seq x <- ts | pred x]) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk') job_cost j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(i <- ts | pred i) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == i) job_cost j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(i <- ts | pred i) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == i) job_cost j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j')) job_cost j' <= \sum_(j <- arrivals_between arr_seq t (t + Δ) | P j) \sum_(i <- ts | pred i && (job_task j == i)) job_cost j
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool

\sum_(i <- arrivals_between arr_seq t (t + Δ) | (i \in arrivals_between arr_seq t (t + Δ)) && pred (job_task i)) job_cost i <= \sum_(i <- arrivals_between arr_seq t (t + Δ) | (i \in arrivals_between arr_seq t (t + Δ)) && pred (job_task i)) \sum_(i0 <- ts | pred i0 && (job_task i == i0)) job_cost i
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool
j0: Job
IN0: j0 \in arrivals_between arr_seq t (t + Δ)
HP0: pred (job_task j0)

job_cost j0 <= \sum_(i <- ts | pred i && (job_task j0 == i)) job_cost j0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool
j0: Job
IN0: j0 \in arrivals_between arr_seq t (t + Δ)
HP0: pred (job_task j0)

job_cost j0 <= ssrnat_addn__canonical__Monoid_ComLaw (if pred (job_task j0) && (job_task j0 == job_task j0) then job_cost j0 else 0) (\big[ssrnat_addn__canonical__Monoid_ComLaw/0]_(y <- rem (T:=Task) (job_task j0) ts) (if pred y && (job_task j0 == y) then job_cost j0 else 0))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool
j0: Job
IN0: j0 \in arrivals_between arr_seq t (t + Δ)
HP0: pred (job_task j0)
job_task j0 \in ts
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool
j0: Job
IN0: j0 \in arrivals_between arr_seq t (t + Δ)
HP0: pred (job_task j0)

job_cost j0 <= ssrnat_addn__canonical__Monoid_ComLaw (if pred (job_task j0) && (job_task j0 == job_task j0) then job_cost j0 else 0) (\big[ssrnat_addn__canonical__Monoid_ComLaw/0]_(y <- rem (T:=Task) (job_task j0) ts) (if pred y && (job_task j0 == y) then job_cost j0 else 0))
by rewrite HP0 andTb eq_refl; apply leq_addr.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
TSK: job_task j = tsk
P:= fun x : Job => pred (job_task x): Job -> bool
j0: Job
IN0: j0 \in arrivals_between arr_seq t (t + Δ)
HP0: pred (job_task j0)

job_task j0 \in ts
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task

\sum_(tsk' <- [seq x <- ts | pred x]) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk') job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task

\sum_(i <- ts | pred i) \sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == i) job_cost j' <= \sum_(tsk' <- ts | pred tsk') task_request_bound_function tsk' Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk0) job_cost j' <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk0) job_cost j' <= task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0
task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk0) job_cost j' <= task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

\sum_(j' <- arrivals_between arr_seq t (t + Δ) | job_task j' == tsk0) job_cost j' <= \sum_(i <- arrivals_between arr_seq t (t + Δ) | job_of_task tsk0 i) task_cost tsk0 * 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

\sum_(j' <- \cat_(t<=t<t + Δ)arrivals_at arr_seq t | job_task j' == tsk0) job_cost j' <= \sum_(i <- \cat_(t<=t<t + Δ)arrivals_at arr_seq t | job_of_task tsk0 i) task_cost tsk0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0
j0: Job
IN0: j0 \in \cat_(t<=t<t + Δ)arrivals_at arr_seq t
EQ: job_task j0 = tsk0

job_cost j0 <= task_cost tsk0
by rewrite -EQ; apply H_valid_job_cost; apply in_arrivals_implies_arrived in IN0.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= task_request_bound_function tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= max_arrivals tsk0 Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred: ssrbool.pred Task
tsk0: Task
INtsk0: tsk0 \in ts
HP0: pred tsk0

size (task_arrivals_between arr_seq tsk0 t (t + Δ)) <= max_arrivals tsk0 (t + Δ - t)
by apply H_is_arrival_bound; last by rewrite leq_addr. Qed. (** Using lemma [sum_of_jobs_le_sum_rbf], we prove that the workload of higher-or-equal priority jobs (w.r.t. task [tsk]) is no larger than the total request-bound function of higher-or-equal priority tasks. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

workload_of_hep_jobs arr_seq j t (t + Δ) <= total_hep_rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

workload_of_hep_jobs arr_seq j t (t + Δ) <= total_hep_rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

\sum_(j0 <- arrivals_between arr_seq t (t + Δ) | hep_job j0 j) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j

\sum_(j0 <- arrivals_between arr_seq t (t + Δ) | hep_task (job_task j0) (job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred_task:= hep_task^~ tsk: Task -> bool

\sum_(j0 <- arrivals_between arr_seq t (t + Δ) | hep_task (job_task j0) (job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred_task:= hep_task^~ tsk: Task -> bool

\sum_(i <- arrivals_between arr_seq t (t + Δ) | pred_task (job_task i)) job_cost i <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
t, Δ: instant
j: Job
H_job_of_tsk: job_of_task tsk j
pred_task:= hep_task^~ tsk: Task -> bool

\sum_(i <- arrivals_between arr_seq t (t + Δ) | pred_task (job_task i)) job_cost i <= \sum_(i <- ts | pred_task i) (task_request_bound_function^~ Δ) i
by apply: sum_of_jobs_le_sum_rbf. Qed. End WorkloadIsBoundedByRBF. (** We next prove that the higher-or-equal-priority workload of tasks different from [tsk] is bounded by [total_ohep_rbf]. The [athep_workload_is_bounded] predicate allows the workload bound to depend on two arguments: the relative offset [A] (w.r.t. the beginning of the corresponding busy interval) of a job to be analyzed and the length of an interval [Δ]. In the case of FP and [total_ohep_rbf] function, the relative offset ([A]) does not play a role and is therefore ignored. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat

athep_workload_is_bounded arr_seq sched tsk (fun=> [eta total_ohep_rbf tsk])
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat

athep_workload_is_bounded arr_seq sched tsk (fun=> [eta total_ohep_rbf tsk])
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_rbf tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | another_task_hep_job j0 j) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
PState: ProcessorState Job
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H3: FP_policy Task
ts: seq Task
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
total_workload:= fun t1 t2 : instant => workload_of_jobs predT (arrivals_between arr_seq t1 t2): instant -> instant -> nat
task_workload:= fun t1 t2 : instant => workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 t2): instant -> instant -> nat
rbf:= task_request_bound_function: Task -> duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts: Task -> duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts: Task -> duration -> nat
j: Job
t1: instant
Δ: duration
POS: job_cost_positive j
TSK: job_of_task tsk j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(i <- ts | pred_task i) (task_request_bound_function^~ Δ) i
by eapply sum_of_jobs_le_sum_rbf => //. Qed. End ProofWorkloadBound. (** In this section, we show that total RBF is a bound on higher-or-equal priority workload under any JLFP policy. *) Section TotalRBFBound. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider a JLFP policy that indicates a higher-or-equal priority relation ... *) Context `{JLFP_policy Job}. (** ... and any valid arrival sequence. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** Further, consider a task set [ts]. *) Variable ts : seq Task. (** Assume that the job costs are no larger than the task costs ... *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** ... and that all jobs come from the task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Let [max_arrivals] be any arrival bound for task set [ts]. *) Context `{MaxArrivals Task}. Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts. (** Consider any time [t] and any interval of length [Δ]. *) Variable t : instant. Variable Δ : duration. (** Next, we consider any job [j]. *) Variable j : Job. (** A simple consequence of lemma [hep_workload_le_total_hep_rbf] is that the workload of higher-or-equal priority jobs is bounded by the total request-bound function. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
H3: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
t: instant
Δ: duration
j: Job

workload_of_hep_jobs arr_seq j t (t + Δ) <= total_request_bound_function ts Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
H3: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
t: instant
Δ: duration
j: Job

workload_of_hep_jobs arr_seq j t (t + Δ) <= total_request_bound_function ts Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
H3: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H4: MaxArrivals Task
H_is_arrival_bound: taskset_respects_max_arrivals arr_seq ts
t: instant
Δ: duration
j: Job

workload_of_jobs predT (arrivals_between arr_seq t (t + Δ)) <= total_request_bound_function ts Δ
by apply total_workload_le_total_rbf. Qed. End TotalRBFBound. (** ** RBF Properties *) (** In this section, we prove simple properties and identities of RBFs. *) Section RequestBoundFunctions. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. (** Consider any arrival sequence. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent: consistent_arrival_times arr_seq. (** Let [tsk] be any task. *) Variable tsk : Task. (** Let [max_arrivals] be a family of valid arrival curves, i.e., for any task [tsk] in [ts] [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval [Δ = 0]. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_arrival_curve (max_arrivals tsk). Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk). (** Let's define some local names for clarity. *) Let task_rbf := task_request_bound_function tsk. (** We prove that [task_rbf 0] is equal to [0]. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

task_rbf 0 = 0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

task_rbf 0 = 0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

task_cost tsk * max_arrivals tsk 0 = 0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

max_arrivals tsk 0 = 0
by move: H_valid_arrival_curve => [T1 T2]. Qed. (** We prove that [task_rbf] is monotone. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

monotone leq task_rbf
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat

monotone leq task_rbf
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
x, y: nat
LE: x <= y

task_rbf x <= task_rbf y
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
x, y: nat
LE: x <= y

(task_cost tsk == 0) || (max_arrivals tsk x <= max_arrivals tsk y)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
x, y: nat
LE: x <= y

max_arrivals tsk x <= max_arrivals tsk y
by move: H_valid_arrival_curve => [_ T]; apply T. Qed. (** In the following, we assume that [tsk] has a positive cost ... *) Hypothesis H_positive_cost : 0 < task_cost tsk. (** ... and [max_arrivals tsk ε] is positive. *) Hypothesis H_arrival_curve_positive : max_arrivals tsk ε > 0. (** Then we prove that [task_rbf] at [ε] is greater than or equal to the task's WCET. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

task_cost tsk <= task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

task_cost tsk <= task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ALT: forall n : nat, n = 0 \/ 0 < n

task_cost tsk <= task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
POS: 0 < task_cost tsk

task_cost tsk <= task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
POS: 0 < task_cost tsk

task_cost tsk * 1 <= task_cost tsk * max_arrivals tsk 1
by rewrite leq_pmul2l //=. Qed. (** As a corollary, we prove that the [task_rbf] at any point [A] greater than [0] is no less than the task's WCET. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

forall A : nat, 0 < A -> task_cost tsk <= task_rbf A
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

forall A : nat, 0 < A -> task_cost tsk <= task_rbf A
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
A: nat
GEQ: 0 < A.+1

task_cost tsk <= task_rbf A.+1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
A: nat
GEQ: 0 < A.+1

task_rbf 1 <= task_rbf A.+1
exact: task_rbf_monotone. Qed. (** Then, we prove that [task_rbf] at [ε] is greater than [0]. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

0 < task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

0 < task_rbf 1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1

task_cost tsk <= task_rbf 1
exact: task_rbf_1_ge_task_cost. Qed. (** Consider a set of tasks [ts] containing the task [tsk]. *) Variable ts : seq Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Next, we prove that cost of [tsk] is less than or equal to the [total_request_bound_function]. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts

forall t : nat, 0 < t -> task_cost tsk <= total_request_bound_function ts t
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts

forall t : nat, 0 < t -> task_cost tsk <= total_request_bound_function ts t
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts
t: nat
GE: 0 < t.+1

task_cost tsk <= total_request_bound_function ts t.+1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts
t: nat
GE: 0 < t.+1

task_rbf 1 <= total_request_bound_function ts t.+1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts
t: nat
GE: 0 < t.+1

task_rbf 1 <= \sum_(tsk <- ts) task_request_bound_function tsk t.+1
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts
t: nat
GE: 0 < t.+1

task_rbf 1 <= ssrnat_addn__canonical__Monoid_ComLaw (task_request_bound_function tsk t.+1) (\big[ssrnat_addn__canonical__Monoid_ComLaw/0]_(y <- rem (T:=Task) tsk ts) task_request_bound_function y t.+1)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
tsk: Task
H2: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
task_rbf:= task_request_bound_function tsk: duration -> nat
H_positive_cost: 0 < task_cost tsk
H_arrival_curve_positive: 0 < max_arrivals tsk 1
ts: seq Task
H_tsk_in_ts: tsk \in ts
t: nat
GE: 0 < t.+1

task_rbf 1 <= task_request_bound_function tsk t.+1
by apply task_rbf_monotone. Qed. End RequestBoundFunctions. (** ** Monotonicity of the Total RBF *) (** In the following section, we note some trivial facts about the monotonicity of various total RBF variants. *) Section TotalRBFMonotonic. (** Consider a set of tasks characterized by WCETs and arrival curves. *) Context {Task : TaskType} `{TaskCost Task} `{MaxArrivals Task}. Variable ts : seq Task. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** We observe that the total RBF is monotonically increasing. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals

monotone leq (total_request_bound_function ts)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals

monotone leq (total_request_bound_function ts)
by apply: sum_leq_mono => tsk IN; apply: task_rbf_monotone. Qed. (** Furthermore, for any fixed-priority policy, ... *) Context `{FP_policy Task}. (** ... the total RBF of higher- or equal-priority tasks is also monotonic, ... *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, monotone leq (total_hep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, monotone leq (total_hep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk: Task

monotone leq (total_hep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in ts

monotone leq (task_request_bound_function tsk')
exact: task_rbf_monotone. Qed. (** ... as is the variant that excludes the reference task. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, monotone leq (total_ohep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, monotone leq (total_ohep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk: Task

monotone leq (total_ohep_request_bound_function_FP ts tsk)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in ts

monotone leq (task_request_bound_function tsk')
exact: task_rbf_monotone. Qed. End TotalRBFMonotonic. (** ** RBFs Equal to Zero for Duration ε *) (** In the following section, we derive simple properties that follow in the pathological case of an RBF that yields zero for duration ε. *) Section DegenerateTotalRBFs. (** Consider a set of tasks characterized by WCETs and arrival curves ... *) Context {Task : TaskType} `{TaskCost Task} `{MaxArrivals Task}. Variable ts : seq Task. (** ... and any consistent arrival sequence of valid jobs of these tasks. *) Context {Job : JobType} `{JobTask Job Task} `{JobArrival Job} `{JobCost Job}. Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent: consistent_arrival_times arr_seq. Hypothesis H_valid_job_cost: arrivals_have_valid_job_costs arr_seq. (** Suppose the arrival curves are correct. *) Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Consider any valid schedule corresponding to this arrival sequence. *) Context {PState : ProcessorState Job}. Variable sched : schedule PState. Hypothesis H_jobs_from_arr_seq : jobs_come_from_arrival_sequence sched arr_seq. (** First, we observe that, if a task's RBF is zero for a duration [ε], then it trivially has a response-time bound of zero. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq

forall tsk : Task, tsk \in ts -> task_request_bound_function tsk 1 = 0 -> task_response_time_bound arr_seq sched tsk 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq

forall tsk : Task, tsk \in ts -> task_request_bound_function tsk 1 = 0 -> task_response_time_bound arr_seq sched tsk 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
ZERO: task_request_bound_function tsk 1 = 0
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

job_response_time_bound sched j 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
ZERO: task_request_bound_function tsk 1 = 0
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

task_request_bound_function tsk 1 = 0 -> job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

task_cost tsk * max_arrivals tsk 1 == 0 -> job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0

job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
NEVER: max_arrivals tsk 1 = 0
job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0

job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0

job_cost j <= ?Goal0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0
?Goal0 <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0

job_cost j <= ?Goal0
by apply: H_valid_job_cost.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
COST: task_cost tsk = 0

task_cost (job_task j) <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
COST: task_cost tsk = 0

job_of_task tsk j -> task_cost (job_task j) <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
COST: task_cost tsk = 0

task_cost tsk <= service sched j (job_arrival j + 0)
by rewrite COST.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
NEVER: max_arrivals tsk 1 = 0

job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
NEVER: max_arrivals tsk 1 = 0

job_cost j <= service sched j (job_arrival j + 0)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
NEVER: max_arrivals tsk 1 = 0

False
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j
NEVER: max_arrivals tsk 1 = 0

0 < max_arrivals tsk 1 -> False
by rewrite NEVER. } Qed. (** Second, given a fixed-priority policy with reflexive priorities, ... *) Context {FP : FP_policy Task}. Hypothesis H_reflexive : reflexive_task_priorities FP. (** ... if the total RBF of all equal- and higher-priority tasks is zero, then the reference task's response-time bound is also trivially zero. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP

forall tsk : Task, tsk \in ts -> total_hep_request_bound_function_FP ts tsk 1 = 0 -> task_response_time_bound arr_seq sched tsk 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP

forall tsk : Task, tsk \in ts -> total_hep_request_bound_function_FP ts tsk 1 = 0 -> task_response_time_bound arr_seq sched tsk 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

job_response_time_bound sched j 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

task_request_bound_function tsk 1 = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

task_request_bound_function tsk 1 == 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
j: Job
ARR: arrives_in arr_seq j
TASK: job_of_task tsk j

tsk \in [seq x <- ts | hep_task x tsk]
rewrite mem_filter; apply /andP; split => //. Qed. (** Thus we we can prove any response-time bound from such a pathological case, which is useful to eliminate this case in higher-level analyses. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP

forall tsk : Task, tsk \in ts -> total_hep_request_bound_function_FP ts tsk 1 = 0 -> forall R : duration, task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP

forall tsk : Task, tsk \in ts -> total_hep_request_bound_function_FP ts tsk 1 = 0 -> forall R : duration, task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
R: duration

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
R: duration

task_response_time_bound arr_seq sched tsk 0 -> task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
R: duration
COMP: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> completed_by sched j (job_arrival j + 0)
j: Job
INj: arrives_in arr_seq j
TASK: job_of_task tsk j

completed_by sched j (job_arrival j + R)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
PState: ProcessorState Job
sched: schedule PState
H_jobs_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq
FP: FP_policy Task
H_reflexive: reflexive_task_priorities FP
tsk: Task
IN: tsk \in ts
ZERO: total_hep_request_bound_function_FP ts tsk 1 = 0
R: duration
COMP: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> completed_by sched j (job_arrival j + 0)
j: Job
INj: arrives_in arr_seq j
TASK: job_of_task tsk j

job_arrival j + 0 <= job_arrival j + R
by lia. Qed. End DegenerateTotalRBFs. (** In this section, we establish results about the task-wise partitioning of total RBFs of multiple tasks. *) Section FP_RBF_partitioning. (** Consider any type of tasks ... *) Context {Task : TaskType} `{TaskCost Task}. (** ... and any type of jobs associated with these tasks, where each task has a cost and an associated arrival curve. *) Context {Job : JobType} `{JobTask Job Task} `{JobCost Job} `{MaxArrivals Task}. (** Consider an FP policy that indicates a higher-or-equal priority relation. *) Context `{FP : FP_policy Task}. (** Consider a task set ts... *) Variable ts : seq Task. (** ...and let [tsk] be any task that serves as the reference point for "higher or equal priority" (usually, but not necessarily, from [ts]). *) Variable tsk : Task. (** We establish that the bound on the total workload due to higher-or-equal-priority tasks can be partitioned task-wise. In other words, it is equal to the sum of the bound on the total workload due to higher-priority tasks and the bound on the total workload due to equal- priority tasks. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task

forall L : duration, total_hep_request_bound_function_FP ts tsk L = total_hp_request_bound_function_FP ts tsk L + total_ep_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task

forall L : duration, total_hep_request_bound_function_FP ts tsk L = total_hp_request_bound_function_FP ts tsk L + total_ep_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
L: duration
t: Task

hep_task t tsk = hp_task t tsk || ep_task t tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
L: duration
t: Task
~~ (hp_task t tsk && ep_task t tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
L: duration
t: Task

hep_task t tsk = hp_task t tsk || ep_task t tsk
by rewrite -andb_orr orNb Bool.andb_true_r.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
L: duration
t: Task

~~ (hp_task t tsk && ep_task t tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
L: duration
t: Task

~~ ~~ hep_task tsk t || ~~ hep_task tsk t
by case: (hep_task _ _)=>//. Qed. (** Now, assume that the priorities are reflexive. *) Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP. (** If the task set does not contain duplicates, then the total higher-or-equal-priority RBF for any task can be split as the sum of the total _other_ higher-or-equal-priority workload and the RBF of the task itself. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP

forall Δ : duration, tsk \in ts -> uniq ts -> total_hep_request_bound_function_FP ts tsk Δ = total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP

forall Δ : duration, tsk \in ts -> uniq ts -> total_hep_request_bound_function_FP ts tsk Δ = total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

total_hep_request_bound_function_FP ts tsk Δ = total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

\sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ = \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ + task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

\sum_(i <- ts | hep_task i tsk && (i != tsk)) task_request_bound_function i Δ + \sum_(i <- ts | hep_task i tsk && ~~ (i != tsk)) task_request_bound_function i Δ = \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ + task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

\sum_(i <- ts | hep_task i tsk && ~~ (i != tsk)) task_request_bound_function i Δ == task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

(fun i : Task => hep_task i tsk && ~~ (i != tsk)) =1 eq_op^~ tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
\sum_(i <- ts | i == tsk) task_request_bound_function i Δ == task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

(fun i : Task => hep_task i tsk && ~~ (i != tsk)) =1 eq_op^~ tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task

hep_task tsko tsk && ~~ (tsko != tsk) = (tsko == tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task
EQ: (tsko == tsk) = true

hep_task tsko tsk && ~~ ~~ true = true
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task

hep_task tsk tsk && ~~ ~~ true = true
by rewrite H_priority_is_reflexive //=.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

\sum_(i <- ts | i == tsk) task_request_bound_function i Δ == task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

task_request_bound_function tsk Δ + \sum_(y <- rem (T:=Task) tsk ts | y == tsk) task_request_bound_function y Δ == task_request_bound_function tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts

(fun i : Task => (i \in rem (T:=Task) tsk ts) && (i == tsk)) =1 xpred0
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task

(tsko \in rem (T:=Task) tsk ts) && (tsko == tsk) = false
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task
EQ: (tsko == tsk) = true

(tsko \in rem (T:=Task) tsk ts) && true = false
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task

(tsk \in rem (T:=Task) tsk ts) && true = false
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
UNIQ: uniq ts
tsko: Task

(tsk \in rem (T:=Task) tsk ts) = false
by apply mem_rem_uniqF => //=. Qed. (** If the task set may contain duplicates, then the we can only say that the sum of other higher-or-equal-priority [RBF] and task [tsk]'s [RBF] is at most the total higher-or-equal-priority workload. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP

forall Δ : duration, tsk \in ts -> total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ <= total_hep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP

forall Δ : duration, tsk \in ts -> total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ <= total_hep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ <= total_hep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

\sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ + task_request_bound_function tsk Δ <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

\sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ + task_request_bound_function tsk Δ <= \sum_(i <- ts | hep_task i tsk && (i != tsk)) task_request_bound_function i Δ + \sum_(i <- ts | hep_task i tsk && ~~ (i != tsk)) task_request_bound_function i Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

task_request_bound_function tsk Δ <= \sum_(i <- ts | hep_task i tsk && ~~ (i != tsk)) task_request_bound_function i Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

(fun i : Task => hep_task i tsk && ~~ (i != tsk)) =1 eq_op^~ tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
task_request_bound_function tsk Δ <= \sum_(i <- ts | i == tsk) task_request_bound_function i Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

(fun i : Task => hep_task i tsk && ~~ (i != tsk)) =1 eq_op^~ tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
tsko: Task

hep_task tsko tsk && ~~ (tsko != tsk) = (tsko == tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
tsko: Task
TSKEQ: (tsko == tsk) = true

hep_task tsko tsk && ~~ ~~ true = true
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts
tsko: Task

hep_task tsk tsk && ~~ ~~ true = true
by rewrite (H_priority_is_reflexive tsk) //=.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

task_request_bound_function tsk Δ <= \sum_(i <- ts | i == tsk) task_request_bound_function i Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobCost Job
H2: MaxArrivals Task
FP: FP_policy Task
ts: seq Task
tsk: Task
H_priority_is_reflexive: reflexive_task_priorities FP
Δ: duration
IN: tsk \in ts

task_request_bound_function tsk Δ <= task_request_bound_function tsk Δ + \sum_(y <- rem (T:=Task) tsk ts | y == tsk) task_request_bound_function y Δ
by apply leq_addr. Qed. End FP_RBF_partitioning. (** In this section, we state a few facts for RBFs in the context of a fixed-priority policy. *) Section RBFFOrFP. (** Consider a set of tasks characterized by WCETs and arrival curves. *) Context {Task : TaskType} `{TaskCost Task} `{MaxArrivals Task}. Variable ts : seq Task. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** For any fixed-priority policy, ... *) Context `{FP_policy Task}. (** ... [total_ohep_request_bound_function_FP] at [0] is always [0]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, total_ohep_request_bound_function_FP ts tsk 0 = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task

forall tsk : Task, total_ohep_request_bound_function_FP ts tsk 0 = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk: Task

\sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other 0 = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk: Task

\sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other 0 == 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk: Task

all (fun x : Task => task_request_bound_function x 0 == 0) [seq x <- ts | hep_task x tsk & x != tsk]
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in [seq x <- ts | hep_task x tsk & x != tsk]

task_request_bound_function tsk' 0 == 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in [seq x <- ts | hep_task x tsk & x != tsk]

task_request_bound_function tsk' 0 = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in [seq x <- ts | hep_task x tsk & x != tsk]

valid_arrival_curve (max_arrivals tsk')
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: tsk' \in [seq x <- ts | hep_task x tsk & x != tsk]

tsk' \in ts
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
tsk, tsk': Task
IN: hep_task tsk' tsk && (tsk' != tsk) && (tsk' \in ts)

tsk' \in ts
by move : IN => /andP[_ ->]. Qed. (** Next we show how [total_ohep_request_bound_function_FP] can bound the workload of jobs in a given interval. *) (** Consider any types of jobs. *) Context `{Job : JobType} `{JobTask Job Task} `{JobCost Job}. (** Consider any arrival sequence that only has jobs from the task set and where all arrivals have a valid job cost. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** Assume there exists an arrival curve and that the arrival sequence respects this curve. *) Context `{MaxArrivals Task}. Hypothesis H_respects_max_arrivals : taskset_respects_max_arrivals arr_seq ts. (** Consider any task [tsk] and any job [j] of the task [tsk]. *) Variable j : Job. Variable tsk : Task. Hypothesis H_job_of_task : job_of_task tsk j. (** For any interval <<[t1, t1 + Δ)>>, the workload of jobs that have higher task priority than the task priority of [j] is bounded by [total_ohep_request_bound_function_FP] for the duration [Δ]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j

forall (Δ : nat) (t1 : instant), workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j

forall (Δ : nat) (t1 : instant), workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | another_task_hep_job j0 j) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
ts: seq Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H1: FP_policy Task
Job: JobType
H2: JobTask Job Task
H3: JobCost Job
arr_seq: arrival_sequence Job
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_respects_max_arrivals: taskset_respects_max_arrivals arr_seq ts
j: Job
tsk: Task
H_job_of_task: job_of_task tsk j
Δ: nat
t1: instant
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(i <- ts | pred_task i) (task_request_bound_function^~ Δ) i
by apply: sum_of_jobs_le_sum_rbf. Qed. End RBFFOrFP. (** We know that the workload of a task in any interval must be bounded by the task's RBF in that interval. However, in the proofs of several lemmas, we are required to reason about the workload of a task in an interval excluding the cost of a particular job (usually the job under analysis). Such a workload can be tightly bounded by the task's RBF for the interval excluding the cost of one task. Notice, however, that this is not a trivial result since a naive approach to proving it would fail. Suppose we want to prove that some quantity [A - B] is upper bounded by some quantity [C - D]. This usually requires us to prove that [A] is upper bounded by [C] _and_ [D] is upper bounded by [B]. In our case, this would be equivalent to proving that the task cost is upper-bounded by the job cost, which of course is not true. So, a different approach is needed, which we show in this section. *) Section TaskWorkload. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any arrival sequence ... *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent: consistent_arrival_times arr_seq. (** ... and assume that WCETs are respected. *) Hypothesis H_arrivals_have_valid_job_costs : arrivals_have_valid_job_costs arr_seq. (** Let [tsk] be any task ... *) Variable tsk : Task. (** ... characterized by a valid arrival curve. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_arrival_curve (max_arrivals tsk). Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk). (** Consider any job [j] of [tsk] ... *) Variable j : Job. Hypothesis H_job_of_task : job_of_task tsk j. (** ... that arrives in the given arrival sequence. *) Hypothesis H_j_arrives_in : arrives_in arr_seq j. (** Consider any time instant [t1] and duration [Δ] such that [j] arrives before [t1 + Δ]. *) Variables (t1 : instant) (Δ : duration). Hypothesis H_job_arrival_lt : job_arrival j < t1 + Δ. (** As a preparatory step, we restrict our attention to the sub-interval containing the job's arrival. We know that the job's arrival necessarily happens in the interval (<<[job_arrival j], t1 + Δ>>). This allows us to show that the task workload excluding the task cost can be bounded by the cost of the arrivals in the interval as follows. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ

task_workload_between arr_seq tsk (job_arrival j) (t1 + Δ) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ

task_workload_between arr_seq tsk (job_arrival j) (t1 + Δ) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ

\sum_(j <- arrivals_between arr_seq (job_arrival j) (t1 + Δ) | job_of_task tsk j) job_cost j - job_cost j <= task_cost tsk * size [seq j <- arrivals_between arr_seq (job_arrival j) (t1 + Δ) | job_of_task tsk j] - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ

\sum_(y <- rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) | job_of_task tsk y) job_cost y <= task_cost tsk * (size [seq y <- rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) | job_of_task tsk y] + 1) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ

\sum_(y <- rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) | job_of_task tsk y) job_cost y <= task_cost tsk * size [seq y <- rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) | job_of_task tsk y]
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
j': Job
ARR': j' \in rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ))
TSK2: job_task j' = tsk

job_cost j' <= task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
j': Job
ARR': j' \in rem (T:=Job) j (arrivals_between arr_seq (job_arrival j) (t1 + Δ))
TSK2: job_task j' = tsk

arrives_in arr_seq j'
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
j': Job
ARR': j' \in arrivals_between arr_seq (job_arrival j) (t1 + Δ)
TSK2: job_task j' = tsk

arrives_in arr_seq j'
by eapply in_arrivals_implies_arrived => //=. Qed. (** To use the above lemma in our final theorem, we require that the arrival of the job under analysis necessarily happens in the interval we are considering. *) Hypothesis H_j_arrives_after_t : t1 <= job_arrival j. (** Under the above assumption, we can finally establish the desired bound. *)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_request_bound_function tsk Δ - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_request_bound_function tsk Δ - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) - task_cost tsk <= task_request_bound_function tsk Δ - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) - task_cost tsk <= task_request_bound_function tsk Δ - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) <= max_arrivals tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
POSE: Δ = t1 + Δ - t1

number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) <= max_arrivals tsk Δ
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
POSE: Δ = t1 + Δ - t1

number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) <= max_arrivals tsk (t1 + Δ - t1)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
POSE: Δ = t1 + Δ - t1

t1 <= t1 + Δ
by lia.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_cost tsk * (number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ)) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (job_arrival j)) + workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) - job_cost j <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

job_cost j <= workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ))
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
task_cost tsk <= task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j
workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (job_arrival j)) + (workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) - job_cost j) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + (task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

job_cost j <= workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ))
by rewrite /task_workload_between /task_workload /workload_of_jobs (big_rem j) //= H_job_of_task leq_addr.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

task_cost tsk <= task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

0 < number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

0 < size [seq j <- arrivals_between arr_seq (job_arrival j) (t1 + Δ) | job_of_task tsk j]
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

j \in arrivals_between arr_seq (job_arrival j) (t1 + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

job_arrival j \in index_iota (job_arrival j) (t1 + Δ)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

job_arrival j <= job_arrival j < t1 + Δ
by apply /andP;split.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (job_arrival j)) + (workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) - job_cost j) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + (task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (t1 + (job_arrival j - t1))) + (workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (t1 + (job_arrival j - t1)) (t1 + Δ)) - job_cost j) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + (job_arrival j - t1)) + (task_cost tsk * number_of_task_arrivals arr_seq tsk (t1 + (job_arrival j - t1)) (t1 + Δ) - task_cost tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (job_arrival j)) + (workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq (job_arrival j) (t1 + Δ)) - job_cost j) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j) + (task_cost tsk * number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ) - task_cost tsk)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (job_arrival j)) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (job_arrival j)
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arrivals_have_valid_job_costs: arrivals_have_valid_job_costs arr_seq
tsk: Task
H3: MaxArrivals Task
H_valid_arrival_curve: valid_arrival_curve (max_arrivals tsk)
H_is_arrival_curve: respects_max_arrivals arr_seq tsk (max_arrivals tsk)
j: Job
H_job_of_task: job_of_task tsk j
H_j_arrives_in: arrives_in arr_seq j
t1: instant
Δ: duration
H_job_arrival_lt: job_arrival j < t1 + Δ
H_j_arrives_after_t: t1 <= job_arrival j

workload_of_jobs (job_of_task tsk) (arrivals_between arr_seq t1 (t1 + (job_arrival j - t1))) <= task_cost tsk * number_of_task_arrivals arr_seq tsk t1 (t1 + (job_arrival j - t1))
by eapply (task_workload_le_num_of_arrivals_times_cost ) => //=. Qed. End TaskWorkload.