Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.model.aggregate.service_of_jobs. Require Export prosa.analysis.facts.behavior.completion. Require Export prosa.analysis.facts.busy_interval.quiet_time. (** * Lemmas about Service Received by Sets of Jobs *) (** In this file, we establish basic facts about the service received by _sets_ of jobs. *) (** To begin with, we provide some basic properties of service of a set of jobs in case of a generic scheduling model. *) Section GenericModelLemmas. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any kind of processor state model, ... *) Context {PState : ProcessorState Job}. (** ... any job arrival sequence with consistent arrivals, .... *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq. (** ... and any schedule of this arrival sequence ... *) Variable sched : schedule PState. (** ... where jobs do not execute before their arrival or after completion. *) Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched. Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched. (** Let P be any predicate over jobs. *) Variable P : pred Job. (** We show that the total service of jobs released in a time interval <<[t1,t2)>> during <<[t1,t2)>> is equal to the sum of: (1) the total service of jobs released in time interval <<[t1, t)>> during time <<[t1, t)>> (2) the total service of jobs released in time interval <<[t1, t)>> during time <<[t, t2)>> and (3) the total service of jobs released in time interval <<[t, t2)>> during time <<[t, t2)>>. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall t1 t2 t : nat, t1 <= t <= t2 -> service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall t1 t2 t : nat, t1 <= t <= t2 -> service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

service_of_jobs sched P (arrivals_between arr_seq t1 t ++ arrivals_between arr_seq t t2) t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

\sum_(i <- arrivals_between arr_seq t1 t | P i) service_during sched i t1 t2 + \sum_(i <- arrivals_between arr_seq t t2 | P i) service_during sched i t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

\sum_(j <- arrivals_between arr_seq t1 t | P j) \sum_(t1 <= i < t) service_at sched j i + \sum_(j <- arrivals_between arr_seq t1 t | P j) \sum_(t <= i < t2) service_at sched j i + \sum_(i <- arrivals_between arr_seq t t2 | P i) service_during sched i t1 t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t + service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

\sum_(i <- arrivals_between arr_seq t t2 | P i) service_during sched i t1 t2 == service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

\sum_(t1 <= i < t) \sum_(i0 <- arrivals_between arr_seq t t2 | P i0) service_at sched i0 i + \sum_(j <- arrivals_between arr_seq t t2 | P j) \sum_(t <= i < t2) service_at sched j i == service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

\sum_(t1 <= i < t) \sum_(i0 <- arrivals_between arr_seq t t2 | P i0) service_at sched i0 i == 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

forall i : nat, (t1 <= i < t) && true -> \sum_(i0 <- arrivals_between arr_seq t t2 | P i0) service_at sched i0 i = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2
x: nat
GEi: t1 <= x
LTi: x < t

\sum_(i <- arrivals_between arr_seq t t2 | P i) service_at sched i x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2
x: nat
GEi: t1 <= x
LTi: x < t

forall i : Job, (i \in arrivals_between arr_seq t t2) && P i -> service_at sched i x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2
x: nat
GEi: t1 <= x
LTi: x < t
j: Job
ARR: j \in arrivals_between arr_seq t t2
Ps: P j

service_at sched j x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2
x: nat
GEi: t1 <= x
LTi: x < t
j: Job
ARR: j \in arrivals_between arr_seq t t2
Ps: P j

x < job_arrival j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2
x: nat
GEi: t1 <= x
LTi: x < t
j: Job
ARR: arrived_between j t t2
Ps: P j

x < job_arrival j
by move: ARR => /andP [N1 N2]; apply leq_trans with t. Qed. (** We show that the total service of jobs released in a time interval <<[t1, t2)>> during <<[t, t2)>> is equal to the sum of: (1) the total service of jobs released in a time interval <<[t1, t)>> during <<[t, t2)>> and (2) the total service of jobs released in a time interval <<[t, t2)>> during <<[t, t2)>>. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall t1 t2 t : nat, t1 <= t <= t2 -> service_of_jobs sched P (arrivals_between arr_seq t1 t2) t t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall t1 t2 t : nat, t1 <= t <= t2 -> service_of_jobs sched P (arrivals_between arr_seq t1 t2) t t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

service_of_jobs sched P (arrivals_between arr_seq t1 t2) t t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2, t: nat
GEt: t1 <= t
LEt: t <= t2

service_of_jobs sched P (arrivals_between arr_seq t1 t) t t2 + service_of_jobs sched P (arrivals_between arr_seq t t2) t t2 = service_of_jobs sched P (arrivals_between arr_seq t1 t ++ arrivals_between arr_seq t t2) t t2
by rewrite {3}/service_of_jobs -big_cat //=. Qed. (** In the following, we consider an arbitrary sequence of jobs [jobs]. *) Variable jobs : seq Job. (** Also, consider an interval <<[t1, t2)>>... *) Variable t1 t2 : instant. (** ...and two additional predicates [P1] and [P2]. *) Variable P1 P2 : pred Job. (** For brevity, in the following comments we denote a subset of [jobs] satisfying a predicate [P] by [{jobs | P}]. *) (** First, we prove that the service received by [{jobs | P1}] can be split into: (1) the service received by [{jobs | P1 ∧ P2}] and (2) the service received by the a subset [{jobs | P1 ∧ ¬ P2}]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P1 jobs t1 t2 = service_of_jobs sched (fun j : Job => P1 j && P2 j) jobs t1 t2 + service_of_jobs sched (fun j : Job => P1 j && ~~ P2 j) jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P1 jobs t1 t2 = service_of_jobs sched (fun j : Job => P1 j && P2 j) jobs t1 t2 + service_of_jobs sched (fun j : Job => P1 j && ~~ P2 j) jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(i <- jobs) (if P1 i then service_during sched i t1 t2 else 0) = \sum_(j <- jobs | P1 j && P2 j) service_during sched j t1 t2 + \sum_(j <- jobs | P1 j && ~~ P2 j) service_during sched j t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(i <- jobs) (if P1 i then service_during sched i t1 t2 else 0) = \sum_(i <- jobs) (if P1 i && P2 i then service_during sched i t1 t2 else 0) + \sum_(j <- jobs | P1 j && ~~ P2 j) service_during sched j t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(i <- jobs) (if P1 i then service_during sched i t1 t2 else 0) = \sum_(i <- jobs) (if P1 i && P2 i then service_during sched i t1 t2 else 0) + \sum_(i <- jobs) (if P1 i && ~~ P2 i then service_during sched i t1 t2 else 0)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
j: Job
IN: j \in jobs

(if P1 j then service_during sched j t1 t2 else 0) = ssrnat_addn__canonical__Monoid_ComLaw (if P1 j && P2 j then service_during sched j t1 t2 else 0) (if P1 j && ~~ P2 j then service_during sched j t1 t2 else 0)
by destruct (P1 _), (P2 _); simpl; lia. Qed. (** We show that the service received by [{jobs | P}] is equal to the difference between the total service received by [jobs] and the service of [{jobs | ¬ P}]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P jobs t1 t2 = total_service_of_jobs_in sched jobs t1 t2 - service_of_jobs sched (fun j : Job => ~~ P j) jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P jobs t1 t2 = total_service_of_jobs_in sched jobs t1 t2 - service_of_jobs sched (fun j : Job => ~~ P j) jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(j <- jobs | P j) service_during sched j t1 t2 = \sum_(j <- jobs | predT j) service_during sched j t1 t2 - \sum_(j <- jobs | ~~ P j) service_during sched j t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(i <- jobs) (if P i then service_during sched i t1 t2 else 0) = \sum_(i <- jobs) service_during sched i t1 t2 - \sum_(i <- jobs) (if ~~ P i then service_during sched i t1 t2 else 0)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

\sum_(i <- jobs) (if P i then service_during sched i t1 t2 else 0) = \sum_(i <- jobs) (service_during sched i t1 t2 - (if ~~ P i then service_during sched i t1 t2 else 0))
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
j: Job
IN: j \in jobs

(if P j then service_during sched j t1 t2 else 0) = service_during sched j t1 t2 - (if ~~ P j then service_during sched j t1 t2 else 0)
by case: (P j) => //=; lia. Qed. (** We show that [service_of_jobs] is monotone with respect to the predicate. That is, given the fact [∀ j ∈ jobs: P1 j ==> P2 j], we show that the service of [{jobs | P1}] is bounded by the service of [{jobs | P2}]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

(forall j : Job, j \in jobs -> P1 j -> P2 j) -> service_of_jobs sched P1 jobs t1 t2 <= service_of_jobs sched P2 jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

(forall j : Job, j \in jobs -> P1 j -> P2 j) -> service_of_jobs sched P1 jobs t1 t2 <= service_of_jobs sched P2 jobs t1 t2
by intros IMPL; apply leq_sum_seq_pred; eauto. Qed. (** Similarly, we show that if [P1] is equivalent to [P2], then the service of [{jobs | P1}] is equal to the service of [{jobs | P2}]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

{in jobs, P1 =1 P2} -> service_of_jobs sched P1 jobs t1 t2 = service_of_jobs sched P2 jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

{in jobs, P1 =1 P2} -> service_of_jobs sched P1 jobs t1 t2 = service_of_jobs sched P2 jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
EQUIV: {in jobs, P1 =1 P2}

service_of_jobs sched P1 jobs t1 t2 = service_of_jobs sched P2 jobs t1 t2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
EQUIV: {in jobs, P1 =1 P2}

{in jobs, (fun i : Job => if P1 i then service_during sched i t1 t2 else 0) =1 (fun i : Job => if P2 i then service_during sched i t1 t2 else 0)}
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
j: Job
IN: j \in jobs

(if P2 j then service_during sched j t1 t2 else 0) = (if P2 j then service_during sched j t1 t2 else 0)
by case: (P2 j) => //. Qed. (** Next, we show an auxiliary lemma that allows us to change the order of summation. Recall that [service_of_jobs] is defined as a sum over all jobs in [jobs] of <<[service_during j [t1,t2)]>>. We show that [service_of_jobs] over an interval <<[t1,t2)>> is equal to the sum over individual time instances (in <<[t1,t2)>>) of [service_of_jobs_at]. In other words, we show that <<[∑_{j ∈ jobs} ∑_{t \in [t1,t2)} service of j at t]>> is equal to <<[∑_{t \in [t1,t2)} ∑_{j ∈ jobs} service of j at t]>>. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P jobs t1 t2 = \sum_(t1 <= t < t2) service_of_jobs_at sched P jobs t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched P jobs t1 t2 = \sum_(t1 <= t < t2) service_of_jobs_at sched P jobs t
by apply exchange_big. Qed. (** We show that service of [{jobs | false}] is equal to 0. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched pred0 jobs t1 t2 = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

service_of_jobs sched pred0 jobs t1 t2 = 0
by apply big_pred0. Qed. (** More generally, if none of the jobs inside [jobs] is scheduled at time [t] or satisfies [P], then total service of [jobs] at time [t] is equal to 0. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

forall t : instant, (forall j : Job, j \in jobs -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P jobs t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job

forall t : instant, (forall j : Job, j \in jobs -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P jobs t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
ALL: forall j : Job, j \in jobs -> ~~ (P j && scheduled_at sched j t)

service_of_jobs_at sched P jobs t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
ALL: forall j : Job, j \in [::] -> ~~ (P j && scheduled_at sched j t)

service_of_jobs_at sched P [::] t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: (forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)
service_of_jobs_at sched P (a :: l) t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
ALL: forall j : Job, j \in [::] -> ~~ (P j && scheduled_at sched j t)

service_of_jobs_at sched P [::] t = 0
by rewrite /service_of_jobs_at big_nil.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: (forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)

service_of_jobs_at sched P (a :: l) t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: (forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)

forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)
service_of_jobs_at sched P (a :: l) t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: (forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)) -> service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)

forall j : Job, j \in l -> ~~ (P j && scheduled_at sched j t)
by intros j' IN; apply ALL; rewrite in_cons; apply/orP; right.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: service_of_jobs_at sched P l t = 0
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)

service_of_jobs_at sched P (a :: l) t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0

(if P a then service_at sched a t + \sum_(j <- l | P j) service_at sched j t else \sum_(j <- l | P j) service_at sched j t) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true

service_at sched a t + \sum_(j <- l | P j) service_at sched j t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: forall j : Job, j \in a :: l -> ~~ (P j && scheduled_at sched j t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true

service_at sched a t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: a \in a :: l -> ~~ (P a && scheduled_at sched a t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true

a \in a :: l
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: ~~ (P a && scheduled_at sched a t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true
service_at sched a t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: a \in a :: l -> ~~ (P a && scheduled_at sched a t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true

a \in a :: l
by rewrite in_cons; apply/orP; left.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
ALL: ~~ (P a && scheduled_at sched a t)
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true

service_at sched a t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
P1, P2: pred Job
t: instant
a: Job
l: seq Job
IHl: \sum_(j <- l | P j) service_at sched j t = 0
Pa: P a = true
ALL: ~~ scheduled_at sched a t

service_at sched a t = 0
by apply not_scheduled_implies_no_service. Qed. End GenericModelLemmas. (** In this section, we prove a lemma about the sum of service with different predicates over a fixed time interval. *) Section HEPService. (** Consider any type of jobs. *) Context {Job : JobType}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any kind of processor state model, ... *) Context {PState : ProcessorState Job}. (** ... any valid arrival sequence, .... *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** ... and any schedule of this arrival sequence ... *) Variable sched : schedule PState. (** ... where jobs do not execute before their arrival. *) Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched. (** Consider a JLFP policy that indicates a higher-or-equal priority relation and assume that the relation is reflexive. *) Context {JLFP : JLFP_policy Job}. Hypothesis H_priority_is_reflexive : reflexive_job_priorities JLFP. (** Consider an interval <<[t1, t2)>> ... *) Variables t1 t2 : instant. (** ... and a job [j] arriving no earlier than [t1]. *) Variable j : Job. Hypothesis H_arrives : arrives_in arr_seq j. Hypothesis H_t1_le_j_arr : t1 <= job_arrival j. (** We prove that the sum of the service during <<[t1, t2)>> of job [j] and the service of higher-or-equal priority jobs distinct from [j] during <<[t1, t2)>> is equal to the service of higher-or-equal priority jobs in <<[t1, t2)>>. *)
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 + service_of_other_hep_jobs arr_seq sched j t1 t2 = service_of_hep_jobs arr_seq sched j t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 + service_of_other_hep_jobs arr_seq sched j t1 t2 = service_of_hep_jobs arr_seq sched j t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
EQ: forall a b c : nat, b <= c -> a = c - b -> a + b = c

service_during sched j t1 t2 + service_of_other_hep_jobs arr_seq sched j t1 t2 = service_of_hep_jobs arr_seq sched j t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 = service_of_hep_jobs arr_seq sched j t1 t2 - service_of_other_hep_jobs arr_seq sched j t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 = service_of_jobs sched (hep_job^~ j) (arrivals_between arr_seq t1 t2) t1 t2 - service_of_jobs sched (another_hep_job^~ j) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2 + service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 != j)) (arrivals_between arr_seq t1 t2) t1 t2 - service_of_jobs sched (another_hep_job^~ j) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2
service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_during sched j t1 t2 = 0
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j
service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2 = 0
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_during sched j t1 t2 = 0
by apply: cumulative_service_before_job_arrival_zero => //.
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2 = 0
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j

service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2 = 0
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LE: t2 <= job_arrival j
IN: j \in arrivals_between arr_seq t1 t2

service_during sched j t1 t2 = 0
by apply: cumulative_service_before_job_arrival_zero => //. }
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2

service_during sched j t1 t2 = service_of_jobs sched (fun j0 : Job => hep_job j0 j && (j0 == j)) (arrivals_between arr_seq t1 t2) t1 t2
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2

(fun j0 : Job => hep_job j0 j && (j0 == j)) =1 pred1 j
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2

(fun j0 : Job => hep_job j0 j && (j0 == j)) =1 pred1 j
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2
j': Job

hep_job j' j && (j' == j) = (j' == j)
Job: JobType
H: JobArrival Job
H0: JobCost Job
PState: ProcessorState Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule PState
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
JLFP: JLFP_policy Job
H_priority_is_reflexive: reflexive_job_priorities JLFP
t1, t2: instant
j: Job
H_arrives: arrives_in arr_seq j
H_t1_le_j_arr: t1 <= job_arrival j
LT: job_arrival j < t2
j': Job
A: j' = j

hep_job j' j && true = true
by rewrite andbT; subst; apply H_priority_is_reflexive. } } Qed. End HEPService. (** In this section, we prove some properties about service of sets of jobs for unit-service processor models. *) Section UnitServiceModelLemmas. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any kind of unit-service processor state model. *) Context {PState : ProcessorState Job}. Hypothesis H_unit_service_proc_model : unit_service_proc_model PState. (** Consider any arrival sequence with consistent arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq. (** Next, consider any unit-service schedule of this arrival sequence ... *) Variable sched : schedule PState. Hypothesis H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq. (** ... where jobs do not execute before their arrival or after completion. *) Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched. Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched. (** Let P be any predicate over jobs. *) Variable P : pred Job. (** First, we prove that the service received by any set of jobs is upper-bounded by the corresponding workload. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall (jobs : seq Job) (t1 t2 : instant), service_of_jobs sched P jobs t1 t2 <= workload_of_jobs P jobs
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job

forall (jobs : seq Job) (t1 t2 : instant), service_of_jobs sched P jobs t1 t2 <= workload_of_jobs P jobs
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant

service_of_jobs sched P jobs t1 t2 <= workload_of_jobs P jobs
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
t1, t2: instant
j: Job

service_during sched j t1 t2 <= job_cost j
by apply cumulative_service_le_job_cost. Qed. (** In this section, we introduce a connection between the cumulative service, cumulative workload, and completion of jobs. *) Section WorkloadServiceAndCompletion. (** Consider an arbitrary time interval <<[t1, t2)>>. *) Variables t1 t2 : instant. (** Let jobs be a set of all jobs arrived during <<[t1, t2)>>. *) Let jobs := arrivals_between arr_seq t1 t2. (** Next, we consider some time instant [t_compl]. *) Variable t_compl : instant. (** And state the proposition that all jobs are completed by time [t_compl]. Next we show that this proposition is equivalent to the fact that [workload of jobs = service of jobs]. *) Let all_jobs_completed_by t_compl := forall j, j \in jobs -> P j -> completed_by sched j t_compl. (** First, we prove that if the workload of [jobs] is equal to the service of [jobs], then any job in [jobs] is completed by time [t_compl]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl -> all_jobs_completed_by t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl -> all_jobs_completed_by t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
ARR: j \in jobs
Pj: P j
ARR2: j \in jobs

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
ARR: arrived_between j t1 t2
Pj: P j
ARR2: j \in jobs

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2

forall a b : nat, (a < b) || (b <= a)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2

forall a b : nat, (a < b) || (b <= a)
by move=> a b; destruct (a < b) eqn:EQU; apply/orP; [by left |right]; apply negbT in EQU; rewrite leqNgt.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl
completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) \sum_(t1 <= t < t_compl) service_at sched j t

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = 0

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = 0

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
EQ: job_cost j + \sum_(y <- rem (T:=Job) j (arrivals_between arr_seq t1 t2) | P y) job_cost y = 0

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
CZ: job_cost j == 0

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
LT: t_compl < t1
CZ: job_cost j == 0

job_cost j <= service sched j t_compl
by move: CZ => /eqP CZ; rewrite CZ.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

completed_by sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

job_cost j <= service sched j t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

job_cost j <= service_during sched j 0 t1 + service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

job_cost j <= service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

all (fun x : Job => service_during sched x t1 t_compl == job_cost x) [seq x <- arrivals_between arr_seq t1 t2 | P x] -> job_cost j = service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl
forall i : Job, i \in arrivals_between arr_seq t1 t2 -> P i -> service_during sched i t1 t_compl <= job_cost i
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

all (fun x : Job => service_during sched x t1 t_compl == job_cost x) [seq x <- arrivals_between arr_seq t1 t2 | P x] -> job_cost j = service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

j \in [seq x <- arrivals_between arr_seq t1 t2 | P x]
by rewrite mem_filter Pj.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
EQ: \sum_(j <- arrivals_between arr_seq t1 t2 | P j) job_cost j = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
j: Job
Pj: P j
ARR2: j \in jobs
T1: t1 <= job_arrival j
T2: job_arrival j < t2
F1: forall a b : nat, (a < b) || (b <= a)
GT: t1 <= t_compl

forall i : Job, i \in arrivals_between arr_seq t1 t2 -> P i -> service_during sched i t1 t_compl <= job_cost i
by intros; apply cumulative_service_le_job_cost; eauto. Qed. (** And vice versa, the fact that any job in [jobs] is completed by time [t_compl] implies that the workload of [jobs] is equal to the service of [jobs]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl -> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl -> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl

workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl

forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl

forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
j: Job
t: nat
LE: t <= t1
ARR: j \in arrivals_between arr_seq t1 t2

service_during sched j 0 t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
j: Job
t: nat
LE: t <= t1
GE: t1 <= job_arrival j
LT: job_arrival j < t2

service_during sched j 0 t = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
j: Job
t: nat
LE: t <= t1
GE: t1 <= job_arrival j
LT: job_arrival j < t2

t <= job_arrival j
by apply leq_trans with t1.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0

workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false
workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = \sum_(j <- arrivals_between arr_seq t1 t2 | P j) \sum_(t1 <= t < t_compl) service_at sched j t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = \sum_(t1 <= j < t_compl) \sum_(i <- arrivals_between arr_seq t1 t2 | P i) service_at sched i j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

workload_of_jobs P (arrivals_between arr_seq t1 t2) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true

forall i : Job, P i && (i \in arrivals_between arr_seq t1 t2) -> job_cost i = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
j: Job
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

job_cost j = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

job_cost j = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

job_cost j = service_during sched j 0 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

job_cost j <= service_during sched j 0 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2
service_during sched j 0 t_compl <= job_cost j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

job_cost j <= service_during sched j 0 t_compl
by apply COMPL.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = true
Pj: P j
ARR: j \in arrivals_between arr_seq t1 t2

service_during sched j 0 t_compl <= job_cost j
by apply service_at_most_cost.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false

workload_of_jobs P (arrivals_between arr_seq t1 t2) = service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false

service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl <= workload_of_jobs P (arrivals_between arr_seq t1 t2)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false
workload_of_jobs P (arrivals_between arr_seq t1 t2) <= service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false

service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl <= workload_of_jobs P (arrivals_between arr_seq t1 t2)
by apply service_of_jobs_le_workload.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false

workload_of_jobs P (arrivals_between arr_seq t1 t2) <= service_of_jobs sched P (arrivals_between arr_seq t1 t2) t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false

\sum_(i <- arrivals_between arr_seq t1 t2 | (i \in arrivals_between arr_seq t1 t2) && P i) job_cost i <= \sum_(i <- arrivals_between arr_seq t1 t2 | (i \in arrivals_between arr_seq t1 t2) && P i) service_during sched i t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
COMPL: all_jobs_completed_by t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false
j: Job
ARR: j \in arrivals_between arr_seq t1 t2
Pj: P j

job_cost j <= service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false
ARR: j \in arrivals_between arr_seq t1 t2
Pj: P j

job_cost j <= service_during sched j t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
EQ: (t_compl <= t1) = false
ARR: j \in arrivals_between arr_seq t1 t2
Pj: P j

t1 <= t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
j: Job
COMPL: completed_by sched j t_compl
F: forall (j : Job) (t : nat), t <= t1 -> j \in arrivals_between arr_seq t1 t2 -> service_during sched j 0 t = 0
ARR: j \in arrivals_between arr_seq t1 t2
Pj: P j
EQ: t1 < t_compl

t1 <= t_compl
by apply ltnW. Qed. (** Using the lemmas above, we prove the equivalence. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl <-> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl <-> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl -> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop
workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl -> all_jobs_completed_by t_compl
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

all_jobs_completed_by t_compl -> workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl
by apply all_jobs_have_completed_impl_workload_eq_service.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
t1, t2: instant
jobs:= arrivals_between arr_seq t1 t2: seq Job
t_compl: instant
all_jobs_completed_by:= fun t_compl : instant => forall j : Job, j \in jobs -> P j -> completed_by sched j t_compl: instant -> Prop

workload_of_jobs P jobs = service_of_jobs sched P jobs t1 t_compl -> all_jobs_completed_by t_compl
by apply workload_eq_service_impl_all_jobs_have_completed. Qed. End WorkloadServiceAndCompletion. End UnitServiceModelLemmas. (** In this section, we prove some properties about service of sets of jobs for unit-service uniprocessor models. *) Section UnitServiceUniProcessorModelLemmas. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any kind of unit-service uniprocessor state model. *) Context {PState : ProcessorState Job}. Hypothesis H_unit_service_proc_model : unit_service_proc_model PState. Hypothesis H_uniprocessor_model : uniprocessor_model PState. (** Consider any arrival sequence with consistent arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq. (** Next, consider any unit-service uni-processor schedule of this arrival sequence ... *) Variable sched : schedule PState. Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq. (** ... where jobs do not execute before their arrival or after completion. *) Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched. Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched. (** Let [P] be any predicate over jobs. *) Variable P : pred Job. (** In this section, we prove that the service received by any set of jobs is upper-bounded by the corresponding interval length. *) Section ServiceOfJobsIsBoundedByLength. (** Let [jobs] denote any set of jobs. *) Variable jobs : seq Job. Hypothesis H_no_duplicate_jobs : uniq jobs. (** We prove that the overall service of [jobs] at a single time instant is at most [1]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall t : instant, service_of_jobs_at sched P jobs t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall t : instant, service_of_jobs_at sched P jobs t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant

service_of_jobs_at sched P jobs t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant

service_of_jobs_at sched P jobs t <= ?n
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
?n <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant

service_of_jobs_at sched P jobs t <= ?n
by apply leq_sum_seq_pred with (P2 := predT); intros.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant

\sum_(i <- jobs | predT i) ((service_at sched)^~ t) i <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
uniq_js: uniq [::]

\sum_(i <- [::]) service_at sched i t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: uniq js -> \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
\sum_(i <- (j :: js)) service_at sched i t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
uniq_js: uniq [::]

\sum_(i <- [::]) service_at sched i t <= 1
by rewrite big_nil.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: uniq js -> \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)

\sum_(i <- (j :: js)) service_at sched i t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)

\sum_(i <- (j :: js)) service_at sched i t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)

service_at sched j t + \sum_(j <- js) service_at sched j t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
Z: service_at sched j t = 0

service_at sched j t + \sum_(j <- js) service_at sched j t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
service_at sched j t + \sum_(j <- js) service_at sched j t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
Z: service_at sched j t = 0

service_at sched j t + \sum_(j <- js) service_at sched j t <= 1
by rewrite Z (leqRW IHjs).
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1

service_at sched j t + \sum_(j <- js) service_at sched j t <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1

\sum_(j <- js) service_in j (sched t) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: 0 < service_at sched j t

\sum_(j <- js) service_in j (sched t) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: scheduled_at sched j t

\sum_(j <- js) service_in j (sched t) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: scheduled_at sched j t
j': Job
IN: j' \in js

service_in j' (sched t) = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: scheduled_at sched j t
j': Job
IN: j' \in js

~~ (0 < service_in j' (sched t))
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: scheduled_at sched j t
j': Job
IN: j' \in js

~~ scheduled_at sched j' t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
j: Job
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS: scheduled_at sched j t
j': Job
IN: j' \in js
SCHED: scheduled_at sched j' t

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
j: Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
js: seq Job
IHjs: \sum_(i <- js) service_at sched i t <= 1
uniq_js: uniq (j :: js)
O: service_at sched j t = 1
POS, SCHED: scheduled_at sched j t
IN: j \in js

False
by move: uniq_js; rewrite cons_uniq => /andP [/negP NIN _]. Qed. (** Next, we prove that the service received by those jobs is no larger than their workload. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall (t : instant) (Δ : duration), service_of_jobs sched P jobs t (t + Δ) <= Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall (t : instant) (Δ : duration), service_of_jobs sched P jobs t (t + Δ) <= Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

service_of_jobs sched P jobs t (t + Δ) <= Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

\sum_(t <= x < t + Δ) 1 = Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration
EQ: \sum_(t <= x < t + Δ) 1 = Δ
service_of_jobs sched P jobs t (t + Δ) <= Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

\sum_(t <= x < t + Δ) 1 = Δ
by rewrite big_const_nat iter_addn mul1n addn0 -{2}[t]addn0 subnDl subn0.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration
EQ: \sum_(t <= x < t + Δ) 1 = Δ

service_of_jobs sched P jobs t (t + Δ) <= Δ
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

service_of_jobs sched P jobs t (t + Δ) <= \sum_(t <= x < t + Δ) 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

\sum_(t <= j < t + Δ) \sum_(i <- jobs | P i) service_in i (sched j) <= \sum_(t <= x < t + Δ) 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration

forall i : nat, true -> \sum_(i0 <- jobs | P i0) service_in i0 (sched i) <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t: instant
Δ: duration
t': nat

\sum_(i <- jobs | P i) service_in i (sched t') <= 1
by apply service_of_jobs_le_1. Qed. (** The same holds for two time instants. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall t1 t2 : instant, service_of_jobs sched P jobs t1 t2 <= t2 - t1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs

forall t1 t2 : instant, service_of_jobs sched P jobs t1 t2 <= t2 - t1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

service_of_jobs sched P jobs t1 t2 <= t2 - t1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

\sum_(t1 <= x < t2) 1 = t2 - t1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant
service_of_jobs sched P jobs t1 t2 <= \sum_(t1 <= x < t2) 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

\sum_(t1 <= x < t2) 1 = t2 - t1
by rewrite big_const_nat iter_addn mul1n addn0.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

service_of_jobs sched P jobs t1 t2 <= \sum_(t1 <= x < t2) 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

\sum_(t1 <= j < t2) \sum_(i <- jobs | P i) service_at sched i j <= \sum_(t1 <= x < t2) 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant

forall i : nat, true -> \sum_(i0 <- jobs | P i0) service_at sched i0 i <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant
t': nat

\sum_(i <- jobs | P i) service_at sched i t' <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant
t': nat
SE: service_of_jobs_at sched P jobs t' <= 1

\sum_(i <- jobs | P i) service_at sched i t' <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
jobs: seq Job
H_no_duplicate_jobs: uniq jobs
t1, t2: instant
t': nat
SE: service_of_jobs_at sched P jobs t' <= 1

\sum_(i <- jobs | P i) service_at sched i t' <= service_of_jobs_at sched P jobs t'
by rewrite leq_sum. Qed. End ServiceOfJobsIsBoundedByLength. (** In this section, we prove a relation between a predicate defined on a set of jobs and the total service of these jobs. *) Section PredServedEqService. (** Assume that the arrival sequence does not contain duplicate arrivals. *) Hypothesis H_arrival_sequence_is_a_set : arrival_sequence_uniq arr_seq. (** Consider a JLFP-policy that indicates a higher-or-equal priority relation. *) Context {JLFP : JLFP_policy Job}. (** Consider a job [j]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. (** We consider an arbitrary time interval <<[t1, t)>> that starts with a quiet time. *) Variable t1 t : instant. Hypothesis H_quiet_time : quiet_time arr_seq sched j t1. (** We prove that the number of points in the interval that satisfy the predicate [exists j ∈ served jobs: P j] is equal to the total service of all jobs that satisfy [P]. Note that this lemma uses [served_jobs_at] instead of its uniprocessor variant [served_job_at]. This is done on purpose so that this lemma fits better with abstract functions and predicates defined in [/analysis/abstract/...] since such functions are usually defined on a general (not necessarily uniprocessor) class of processor models. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1

(forall j' : Job, P j' -> hep_job j' j) -> \sum_(t1 <= t' < t) has P (served_jobs_at arr_seq sched t') = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1

(forall j' : Job, P j' -> hep_job j' j) -> \sum_(t1 <= t' < t) has P (served_jobs_at arr_seq sched t') = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j

\sum_(t1 <= t' < t) has P (served_jobs_at arr_seq sched t') = service_of_jobs sched P (arrivals_between arr_seq t1 t) t1 t
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has P (served_jobs_at arr_seq sched x) = \sum_(i <- arrivals_between arr_seq t1 t | P i) service_at sched i x
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
js: seq Job
UNIQ: uniq js

\sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
L: forall js : seq Job, uniq js -> \sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js
has P (served_jobs_at arr_seq sched x) = \sum_(i <- arrivals_between arr_seq t1 t | P i) service_at sched i x
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
js: seq Job
UNIQ: uniq js

\sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js

\sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
L: forall (n : nat) (b : bool), (b -> n = 1) -> (~~ b -> n = 0) -> n = b

\sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js

has (fun j : Job => P j && receives_service_at sched j x) js -> \sum_(i <- js | P i) service_at sched i x = 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
~~ has (fun j : Job => P j && receives_service_at sched j x) js -> \sum_(i <- js | P i) service_at sched i x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js

has (fun j : Job => P j && receives_service_at sched j x) js -> \sum_(i <- js | P i) service_at sched i x = 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
jo: Job
IN: jo \in js
Pjo: P jo
SERVjo: receives_service_at sched jo x

\sum_(i <- js | P i) service_at sched i x = 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
jo: Job
IN: jo \in js
Pjo: P jo
SERVjo: receives_service_at sched jo x

\sum_(i <- js | P i) service_at sched i x <= 1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
jo: Job
IN: jo \in js
Pjo: P jo
SERVjo: receives_service_at sched jo x
0 < \sum_(i <- js | P i) service_at sched i x
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
jo: Job
IN: jo \in js
Pjo: P jo
SERVjo: receives_service_at sched jo x

\sum_(i <- js | P i) service_at sched i x <= 1
by apply service_of_jobs_le_1 => //.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
jo: Job
IN: jo \in js
Pjo: P jo
SERVjo: receives_service_at sched jo x

0 < \sum_(i <- js | P i) service_at sched i x
by rewrite sum_nat_gt0; apply/hasP; exists jo => //; rewrite mem_filter IN Pjo.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js

~~ has (fun j : Job => P j && receives_service_at sched j x) js -> \sum_(i <- js | P i) service_at sched i x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js

~~ has (fun j : Job => P j && receives_service_at sched j x) js -> \sum_(i <- js | P i) service_at sched i x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
ALL: {in js, forall x0 : Job, ~~ (P x0 && receives_service_at sched x0 x)}
jo: Job
Pjo: P jo
IN: jo \in js

service_at sched jo x = 0
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
x: nat
js: seq Job
UNIQ: uniq js
ALL: {in js, forall x0 : Job, ~~ (P x0 && receives_service_at sched x0 x)}
jo: Job
Pjo: P jo
IN: jo \in js
B: ~~ receives_service_at sched jo x

service_at sched jo x = 0
by move: B; rewrite /receives_service_at -leqNgt leqn0 => /eqP ->. }
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
L: forall js : seq Job, uniq js -> \sum_(i <- js | P i) service_at sched i x = has (fun j : Job => P j && receives_service_at sched j x) js

has P (served_jobs_at arr_seq sched x) = \sum_(i <- arrivals_between arr_seq t1 t | P i) service_at sched i x
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has P (served_jobs_at arr_seq sched x) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

forall (X : Type) (P Q : pred X) (xs : seq X), has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
L: forall (X : Type) (P Q : pred X) (xs : seq X), has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]
has P (served_jobs_at arr_seq sched x) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

forall (X : Type) (P Q : pred X) (xs : seq X), has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]

forall (X : Type) (P Q : pred X) (xs : seq X), has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]
X: Type
P, Q: pred X
x: X
xs: seq X
IHxs: has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]

has (fun x : X => P x && Q x) (x :: xs) = has P [seq x <- x :: xs | Q x]
by rewrite //= IHxs; destruct (P x) eqn:Px, (Q x) eqn:Qx; rewrite //= ?Px ?Qx.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
L: forall (X : Type) (P Q : pred X) (xs : seq X), has (fun x : X => P x && Q x) xs = has P [seq x <- xs | Q x]

has P (served_jobs_at arr_seq sched x) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_up_to arr_seq x) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq 0 t1 ++ arrivals_between arr_seq t1 x.+1) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq 0 t1) = false
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq t1 x.+1) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq 0 t1) = false
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo
SERV: receives_service_at sched jo x

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo
SERV: ~~ completed_by sched jo x

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo

completed_by sched jo x
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo

arrives_in arr_seq jo
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo
arrived_before jo t1
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo

arrives_in arr_seq jo
by apply: in_arrivals_implies_arrived.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq 0 t1
Pjo: P jo

arrived_before jo t1
by apply: job_arrival_between_lt.
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq t1 x.+1) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun x0 : Job => P x0 && receives_service_at sched x0 x) (arrivals_between arr_seq t1 x.+1) = has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq t1 x.+1 ++ arrivals_between arr_seq x.+1 t)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t

has (fun j : Job => P j && receives_service_at sched j x) (arrivals_between arr_seq x.+1 t) = false
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq x.+1 t
Pjo: P jo
SERV: receives_service_at sched jo x

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq x.+1 t
Pjo: P jo
SERV: scheduled_at sched jo x

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: jo \in arrivals_between arr_seq x.+1 t
Pjo: P jo
SERV: has_arrived jo x

False
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JobArrival Job
H1: JobCost Job
PState: ProcessorState Job
H_unit_service_proc_model: unit_service_proc_model PState
H_uniprocessor_model: uniprocessor_model PState
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
sched: schedule PState
H_jobs_come_from_arrival_sequence: jobs_come_from_arrival_sequence sched arr_seq
H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched
H_completed_jobs_dont_execute: completed_jobs_dont_execute sched
P: pred Job
H_arrival_sequence_is_a_set: arrival_sequence_uniq arr_seq
JLFP: JLFP_policy Job
j: Job
H_j_arrives: arrives_in arr_seq j
t1, t: instant
H_quiet_time: quiet_time arr_seq sched j t1
Phep: forall j' : Job, P j' -> hep_job j' j
x: nat
t1lex: t1 <= x
xltt: x < t
jo: Job
IN: x < job_arrival jo
Pjo: P jo
SERV: has_arrived jo x

False
by move: IN SERV; rewrite /has_arrived; lia. Qed. End PredServedEqService. End UnitServiceUniProcessorModelLemmas.