Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.definitions.priority.classes. (** In this section, we prove some basic properties about priority relations. *) Section BasicLemmas. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. (** Consider a JLFP policy that indicates a higher-or-equal priority relation. *) Context `{JLFP_policy Job}. (** First, we prove that [another_hep_job] relation is anti-reflexive. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j : Job, ~ another_hep_job j j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j : Job, ~ another_hep_job j j
by move => j /andP [_ /negP NEQ]; apply: NEQ. Qed. (** Second, we relate [another_hep_job] to [same_task]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j j' : Job, ~~ same_task j j' -> another_hep_job j j' = hep_job j j'
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j j' : Job, ~~ same_task j j' -> another_hep_job j j' = hep_job j j'
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
j, j': Job
DIFF: ~~ same_task j j'

hep_job j j' && (j != j') = hep_job j j'
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
j, j': Job
DIFF: ~~ same_task j j'

(j != j') = true
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
j, j': Job

same_task j' j'
by apply/eqP. Qed. (** We show that [another_task_hep_job] is "task-wise" anti-reflexive; that is, given two jobs [j] and [j'] from the same task, [another_task_hep_job j' j] is false. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall (tsk : Task) (j j' : Job), job_of_task tsk j -> job_of_task tsk j' -> ~ another_task_hep_job j' j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall (tsk : Task) (j j' : Job), job_of_task tsk j -> job_of_task tsk j' -> ~ another_task_hep_job j' j
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
tsko: Task
j, j': Job
TSK1: job_task j = tsko
TSK2: job_task j' = tsko
AA: job_task j' != job_task j

False
by move: AA; rewrite TSK1 TSK2 => /negP A; apply: A. Qed. (** Alternative definition of [another_task_hep_job] using [another_hep_job] instead of [hep_job]. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, another_task_hep_job j1 j2 = another_hep_job j1 j2 && (job_task j1 != job_task j2)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, another_task_hep_job j1 j2 = another_hep_job j1 j2 && (job_task j1 != job_task j2)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
j1, j2: Job

another_task_hep_job j1 j2 = another_hep_job j1 j2 && (job_task j1 != job_task j2)
by rewrite -andbA [X in _ && X]andb_idl//; apply: contraNN => /eqP->. Qed. (** [another_hep_job] can either come from another or the same task... *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, another_hep_job j1 j2 = another_task_hep_job j1 j2 || another_hep_job_of_same_task j1 j2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, another_hep_job j1 j2 = another_task_hep_job j1 j2 || another_hep_job_of_same_task j1 j2
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job
j1, j2: Job

another_hep_job j1 j2 = another_task_hep_job j1 j2 || another_hep_job_of_same_task j1 j2
by rewrite another_task_hep_job_another_hep_job -andb_orr orNb andbT. Qed. (** ...but not both. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, ~~ (another_task_hep_job j1 j2 && another_hep_job_of_same_task j1 j2)
Task: TaskType
Job: JobType
H: JobTask Job Task
H0: JLFP_policy Job

forall j1 j2 : Job, ~~ (another_task_hep_job j1 j2 && another_hep_job_of_same_task j1 j2)
by move=> j1 j2; rewrite !negb_and negbK; case: eqP; rewrite /= !orbT. Qed. End BasicLemmas. (** In the following section, we establish properties of [hp_task] and [ep_task ]auxiliary priority relations defined for FP policies. They are useful in proving properties of the ELF scheduling policy. *) Section FPRelationsProperties. (** Consider any type of tasks and an FP policy that indicates a higher-or-equal priority relation on the tasks.*) Context {Task : TaskType} {FP_policy : FP_policy Task}. (** First, we prove some trivial lemmas about the [hep_task] and [ep_task] relations. *) Section BasicProperties. (** [hp_task] is irreflexive. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

irreflexive (T:=Task) hp_task
Task: TaskType
FP_policy: definitions.FP_policy Task

irreflexive (T:=Task) hp_task
by move=> tsk; rewrite /hp_task; case: hep_task. Qed. (** If a task [tsk1] has higher priority than task [tsk2], then task [tsk1] has higher-or-equal priority than task [tsk2]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, hp_task tsk1 tsk2 -> hep_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, hp_task tsk1 tsk2 -> hep_task tsk1 tsk2
by move=> ? ? /andP[]. Qed. (** If a task [tsk1] has equal priority as task [tsk2], then task [tsk1] has higher-or-equal priority than task [tsk2]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 -> hep_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 -> hep_task tsk1 tsk2
by move=> ? ? /andP[]. Qed. (** If a task has higher priority than another task, then the two do not have equal priority. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 -> ~~ hp_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 -> ~~ hp_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task
_tsk1_, _tsk2_: Task
_b_: hep_task _tsk2_ _tsk1_

~~ hp_task _tsk1_ _tsk2_
by rewrite negb_and; apply/orP; right; apply/negPn. Qed. (** Task [tsk1] having equal priority as task [tsk2] is equivalent to task [tsk2] having equal priority as task [tsk1]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 = ep_task tsk2 tsk1
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, ep_task tsk1 tsk2 = ep_task tsk2 tsk1
by move=> x y; rewrite /ep_task andbC. Qed. (** If a task [tsk1] has higher-or-equal priority than a task [tsk2], then [tsk1] either has strictly higher priority than [tsk2] or the two have equal priority. *)
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, hep_task tsk1 tsk2 = hp_task tsk1 tsk2 || ep_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task

forall tsk1 tsk2 : Task, hep_task tsk1 tsk2 = hp_task tsk1 tsk2 || ep_task tsk1 tsk2
by move=> ? ?; rewrite /hp_task /ep_task -andb_orr orNb andbT. Qed. End BasicProperties. (** In the following section, we establish a useful property about the equal priority relation, which follows when the FP policy is reflexive. *) Section ReflexiveProperties. (** Assuming that the FP policy is reflexive ... *) Hypothesis H_reflexive : reflexive hep_task. (** ... it follows that the equal priority relation is reflexive. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_reflexive: reflexive (T:=Task) hep_task

reflexive (T:=Task) ep_task
Task: TaskType
FP_policy: definitions.FP_policy Task
H_reflexive: reflexive (T:=Task) hep_task

reflexive (T:=Task) ep_task
by move=> ?; apply /andP; split. Qed. End ReflexiveProperties. (** Now we establish useful properties about the higher priority relation, which follow when the FP policy is transitive. *) Section TransitiveProperties. (** Assuming that the FP policy is transitive ... *) Hypothesis H_transitive : transitive hep_task. (** ... it follows that the higher priority relation is also transitive. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

transitive (T:=Task) hp_task
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

transitive (T:=Task) hp_task
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
y, x, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
Nhepyz: ~~ hep_task z y

hep_task x z
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
y, x, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
Nhepyz: ~~ hep_task z y
~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
y, x, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
Nhepyz: ~~ hep_task z y

hep_task x z
exact: H_transitive hepyz.
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
y, x, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
Nhepyz: ~~ hep_task z y

~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
y, x, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
Nhepyz: ~~ hep_task z y

~~ hep_task z x
by apply: contraNN Nhepyx; exact: H_transitive. } Qed. (** If task [tsk1] has higher priority than task [tsk2], and task [tsk2] has higher-or-equal priority than task [tsk3], then task [tsk1] has higher priority than task [tsk3]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

forall tsk1 tsk2 tsk3 : Task, hp_task tsk1 tsk2 -> hep_task tsk2 tsk3 -> hp_task tsk1 tsk3
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

forall tsk1 tsk2 tsk3 : Task, hp_task tsk1 tsk2 -> hep_task tsk2 tsk3 -> hp_task tsk1 tsk3
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z

hep_task x z
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z
~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z

hep_task x z
exact: H_transitive hepyz.
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z

~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
Nhepyx: ~~ hep_task y x
hepyz: hep_task y z

~~ hep_task z x
by apply: contraNN Nhepyx; exact: H_transitive. } Qed. (** If task [tsk1] has higher-or-equal priority than task [tsk2], and task [tsk2] has strictly higher priority than task [tsk3], then task [tsk1] has higher priority than task [tsk3]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

forall tsk1 tsk2 tsk3 : Task, hep_task tsk1 tsk2 -> hp_task tsk2 tsk3 -> hp_task tsk1 tsk3
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task

forall tsk1 tsk2 tsk3 : Task, hep_task tsk1 tsk2 -> hp_task tsk2 tsk3 -> hp_task tsk1 tsk3
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
hepyz: hep_task y z
Nhepzy: ~~ hep_task z y

hep_task x z
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
hepyz: hep_task y z
Nhepzy: ~~ hep_task z y
~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
hepyz: hep_task y z
Nhepzy: ~~ hep_task z y

hep_task x z
exact: H_transitive hepyz.
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
hepyz: hep_task y z
Nhepzy: ~~ hep_task z y

~~ hep_task z x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_transitive: transitive (T:=Task) hep_task
x, y, z: Task
hepxy: hep_task x y
hepyz: hep_task y z
Nhepzy: ~~ hep_task z y

~~ hep_task z x
apply: contraNN Nhepzy => hepzy; exact: H_transitive hepxy. } Qed. End TransitiveProperties. (** Finally, we establish a useful property about the higher priority relation, which follows when the FP policy is total. *) Section TotalProperties. (** We assume that the FP policy is total. *) Hypothesis H_total : total hep_task. (** If a task [tsk1] does not have higher-or-equal priority than task [tsk2], then task [tsk2] has higher priority than task [tsk1]. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hep_task tsk1 tsk2 = hp_task tsk2 tsk1
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hep_task tsk1 tsk2 = hp_task tsk2 tsk1
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task
x, y: Task

~~ hep_task x y -> hp_task y x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task
x, y: Task
Nhepxy: ~~ hep_task x y

hep_task y x
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task
x, y: Task
Nhepxy: ~~ hep_task x y
h: hep_task x y

hep_task y x
by exfalso; move/negP: Nhepxy. Qed. (** The converse also holds. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hp_task tsk1 tsk2 = hep_task tsk2 tsk1
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hp_task tsk1 tsk2 = hep_task tsk2 tsk1
by move=> x y; rewrite -not_hep_hp_task negbK. Qed. (** If a task [tsk1] does not have higher priority than a task [tsk2], then [tsk1] either has lesser priority than [tsk2] or the two have equal priority. *)
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hp_task tsk1 tsk2 = ~~ hep_task tsk1 tsk2 || ep_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task

forall tsk1 tsk2 : Task, ~~ hp_task tsk1 tsk2 = ~~ hep_task tsk1 tsk2 || ep_task tsk1 tsk2
Task: TaskType
FP_policy: definitions.FP_policy Task
H_total: total (T:=Task) hep_task
tsk1, tsk2: Task

hep_task tsk2 tsk1 = hp_task tsk2 tsk1 || ep_task tsk1 tsk2
by rewrite hep_hp_ep_task ep_task_sym. Qed. End TotalProperties. End FPRelationsProperties. (** In the following section, we show that FP policies respect the sequential tasks hypothesis. It means that later-arrived jobs of a task don't have higher priority than earlier-arrived jobs of the same task (assuming that task priorities are reflexive).*) Section FPRemarks. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. (** ... and any type of jobs associated with these tasks, ... *) Context {Job : JobType}. Context `{JobTask Job Task}. (** .. and assume that jobs have a cost and an arrival time. *) Context `{JobArrival Job}. Context `{JobCost Job}. (** Consider any FP policy. *) Context {FP : FP_policy Task}.
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
FP: FP_policy Task

reflexive_task_priorities FP -> policy_respects_sequential_tasks FP
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
FP: FP_policy Task

reflexive_task_priorities FP -> policy_respects_sequential_tasks FP
Task: TaskType
H: TaskCost Task
Job: JobType
H0: JobTask Job Task
H1: JobArrival Job
H2: JobCost Job
FP: FP_policy Task
REFL: reflexive_task_priorities FP
j1, j2: Job
EQ: job_task j1 = job_task j2
LT: job_arrival j1 <= job_arrival j2

hep_job j1 j2
by rewrite /hep_job /FP_to_JLFP EQ. Qed. End FPRemarks. Section JLFPFP. (** Consider any type of tasks ... *) Context {Task : TaskType}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. (** Consider any pair of JLFP and FP policies that are compatible. *) Context (JLFP : JLFP_policy Job) (FP : FP_policy Task). Hypothesis H_compatible : JLFP_FP_compatible JLFP FP. (** We restate [JLFP_FP_compatible] to make it easier to discover with [Search]. Here is the first part... *)
Task: TaskType
Job: JobType
H: JobTask Job Task
JLFP: JLFP_policy Job
FP: FP_policy Task
H_compatible: JLFP_FP_compatible JLFP FP

forall j1 j2 : Job, hep_job j1 j2 -> hep_task (job_task j1) (job_task j2)
Task: TaskType
Job: JobType
H: JobTask Job Task
JLFP: JLFP_policy Job
FP: FP_policy Task
H_compatible: JLFP_FP_compatible JLFP FP

forall j1 j2 : Job, hep_job j1 j2 -> hep_task (job_task j1) (job_task j2)
exact: H_compatible.1. Qed. (** ...and second part. *)
Task: TaskType
Job: JobType
H: JobTask Job Task
JLFP: JLFP_policy Job
FP: FP_policy Task
H_compatible: JLFP_FP_compatible JLFP FP

forall j1 j2 : Job, hp_task (job_task j1) (job_task j2) -> hep_job j1 j2
Task: TaskType
Job: JobType
H: JobTask Job Task
JLFP: JLFP_policy Job
FP: FP_policy Task
H_compatible: JLFP_FP_compatible JLFP FP

forall j1 j2 : Job, hp_task (job_task j1) (job_task j2) -> hep_job j1 j2
exact: H_compatible.2. Qed. End JLFPFP. (** We add a lemma into the "Hint Database" basic_rt_facts, so Coq will be able to apply it automatically. *) Global Hint Resolve respects_sequential_tasks : basic_rt_facts.