Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Serlib plugin: coq-paramcoq.plugin is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file paramcoq.cmxs (using legacy method) ... done]
Notations "[ eta _ ]" defined at level 0 and "[ TASK id: _ cost: _ deadline: _ arrival: _ priority: _ ]" defined at level 6 have incompatible prefixes. One of them will likely not work. [notation-incompatible-prefix,parsing,default]
Notations "[ eta _ ]" defined at level 0 and "[ PERIODIC-TASK id: _ cost: _ deadline: _ period: _ priority: _ ]" defined at level 6 have incompatible prefixes. One of them will likely not work. [notation-incompatible-prefix,parsing,default]
Notations "[ eta _ ]" defined at level 0 and "[ SPORADIC-TASK id: _ cost: _ deadline: _ separation: _ priority: _ ]" defined at level 6 have incompatible prefixes. One of them will likely not work. [notation-incompatible-prefix,parsing,default]
Notations "[ eta _ ]" defined at level 0 and "[ CURVE horizon: _ steps: _ ]" defined at level 6 have incompatible prefixes. One of them will likely not work. [notation-incompatible-prefix,parsing,default]
(** First, we define the concept of higher-or-equal-priority workload. *) Definition bound_on_total_hep_workload (ts : seq Task) (tsk : Task) A Δ := \sum_(tsk_o <- ts | tsk_o != tsk) task_rbf tsk_o (minn ((A + ε) + task_deadline tsk - task_deadline tsk_o) Δ). (** Next, we provide a function that checks a single point [P=(A,F)] of the search space when adopting a fully-preemptive policy. *) Definition check_point_FP (ts : seq Task) (tsk : Task) (R : nat) (P : nat * nat) := (task_rbf tsk (P.1 + ε) + bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) <= P.1 + P.2) && (P.2 <= R). (** Further, we provide a way to compute the blocking bound when using nonpreemptive policies. *) Definition blocking_bound_NP (ts : seq Task) (tsk : Task) (A : nat) := \max_(tsk_o <- [seq i | i <- ts] | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - ε). (** Finally, we provide a function that checks a single point [P=(A,F)] of the search space when adopting a fully-nonpreemptive policy. *) Definition check_point_NP (ts : seq Task) (tsk : Task) (R : nat) (P : nat * nat) := (blocking_bound_NP ts tsk P.1 + (task_rbf tsk (P.1 + ε) - (task_cost tsk - ε)) + bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) <= P.1 + P.2) && (P.2 + (task_cost tsk - ε) <= R). (** * Search Space Definitions *) Section SearchSpaceDefinition. (** Assume that an arrival curve based on a concrete prefix is given. *) #[local] Existing Instance ConcreteMaxArrivals. Definition Task := concrete_task : eqType. Definition Job := concrete_job : eqType. Context (TMNSP: TaskMaxNonpreemptiveSegment Task). (** First, we recall the notion of correct search space as defined by abstract RTA. *) Definition correct_search_space ts (tsk:Task) L := [seq A <- iota 0 L | is_in_search_space ts tsk L A]. (** Next, we provide a computation-oriented way to compute abstract RTA's search space for fixed-priority schedules, as we will prove that earliest-deadline-first is equivalent. We start with a function that computes the search space in a generic interval <<[l,r)>>, ... *) Definition search_space_emax_FP_h (tsk : Task) l r := let h := get_horizon_of_task tsk in let offsets := map (muln h) (iota l r) in let emax_offsets := repeat_steps_with_offset tsk offsets in map predn emax_offsets. (** ... which we then apply to the interval <<[0, (L %/h).+1)>>. *) Definition search_space_emax_FP L (tsk : Task) := let h := get_horizon_of_task tsk in search_space_emax_FP_h (tsk : Task) 0 (L %/h).+1. (** Analogously, we define the search space for a task scheduled under earliest-deadline-first in a generic interval <<[l,r)>>, ... *) Definition task_search_space_emax_EDF_h (tsk tsko : Task) (l r : nat) := let h := get_horizon_of_task tsko in let offsets := map (muln h) (iota l r) in let emax_offsets := repeat_steps_with_offset tsko offsets in let emax_edf_offsets := shift_points_neg (shift_points_pos emax_offsets (task_deadline tsko)) (task_deadline tsk) in map predn emax_edf_offsets. (** ...which we then apply to the interval <<[0, (L %/h).+1)>>. *) Definition task_search_space_emax_EDF (tsk tsko : Task) (L : nat) := let h := get_horizon_of_task tsko in task_search_space_emax_EDF_h tsk tsko 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ h).+1. (** Finally, we define the overall search space as the concatenation of per-task search spaces. *) Definition search_space_emax_EDF ts (tsk : Task) (L : nat) := \cat_(tsko <- ts) task_search_space_emax_EDF tsk tsko L. End SearchSpaceDefinition. (** * Fast Search Space Computation Lemmas *) Section FastSearchSpaceComputationSubset. (** Consider a given maximum busy-interval length [L], ... *) Variable L : duration. (** ... a task set [ts] with valid arrivals, positive task costs, and arrival curves with positive steps, ... *) Variable ts : seq Task. Hypothesis H_valid_task_set : task_set_with_valid_arrivals ts. Hypothesis H_all_tsk_positive_cost : forall tsk, tsk \in ts -> 0 < task_cost tsk. Hypothesis H_all_tsk_positive_step : forall tsk, tsk \in ts -> fst (head (0,0) (steps_of (get_arrival_curve_prefix tsk))) > 0. (** ... and a task belonging to [ts]. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** First, we show that the earliest-deadline-first search space is a generalization of the fixed-priority search space. *)
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

task_search_space_emax_EDF_h tsk tsk 0 ((L + (task_deadline tsk - task_deadline tsk)) %/ get_horizon_of_task tsk).+1 = search_space_emax_FP L tsk
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

task_search_space_emax_EDF_h tsk tsk 0 ((L + (task_deadline tsk - task_deadline tsk)) %/ get_horizon_of_task tsk).+1 = search_space_emax_FP L tsk
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

[seq i.-1 | i <- shift_points_neg (shift_points_pos (repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsk)) %/ get_horizon_of_task tsk).+1]) (task_deadline tsk)) (task_deadline tsk)] = [seq i.-1 | i <- repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]]
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

[seq i.-1 | i <- shift_points_neg (shift_points_pos (repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]) (task_deadline tsk)) (task_deadline tsk)] = [seq i.-1 | i <- repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]]
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
S:= repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]: seq nat

[seq i.-1 | i <- shift_points_neg (shift_points_pos S (task_deadline tsk)) (task_deadline tsk)] = [seq i.-1 | i <- S]
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
S:= repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]: seq nat

S = shift_points_neg (shift_points_pos S (task_deadline tsk)) (task_deadline tsk)
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
S:= repeat_steps_with_offset tsk [seq get_horizon_of_task tsk * i | i <- iota 0 (L %/ get_horizon_of_task tsk).+1]: seq nat

[seq x - task_deadline tsk | x <- [seq task_deadline tsk + i | i <- S] & task_deadline tsk <= x] = S
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
a: nat
S: seq nat
IHS: [seq x - task_deadline tsk | x <- [seq task_deadline tsk + i | i <- S] & task_deadline tsk <= x] = S

[seq x - task_deadline tsk | x <- [seq task_deadline tsk + i | i <- a :: S] & task_deadline tsk <= x] = a :: S
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
a: nat
S: seq nat
IHS: [seq x - task_deadline tsk | x <- [seq task_deadline tsk + i | i <- S] & task_deadline tsk <= x] = S

task_deadline tsk + a - task_deadline tsk :: S = a :: S
by replace ( _ + _ - _) with a; last lia. Qed. (** Finally, we show that the abstract RTA's standard search space is a subset of the computation-oriented version defined above. *)
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

forall A : Datatypes_nat__canonical__eqtype_Equality, A \in correct_search_space ts tsk L -> A \in search_space_emax_EDF ts tsk L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts

forall A : Datatypes_nat__canonical__eqtype_Equality, A \in correct_search_space ts tsk L -> A \in search_space_emax_EDF ts tsk L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality

A \in [seq A <- iota 0 L | A < L & task_rbf_changes_at tsk A || bound_on_total_hep_workload_changes_at ts tsk A] -> A \in search_space_emax_EDF ts tsk L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: bound_on_total_hep_workload_changes_at ts tsk A
IN: A \in iota 0 L
A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L
INTS: tsk \in ts

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L
ts_l, ts_r: seq Task
EQ: ts = ts_l ++ [:: tsk] ++ ts_r

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L
ts_l, ts_r: seq Task
EQ: ts = ts_l ++ [:: tsk] ++ ts_r

A \in task_search_space_emax_EDF tsk tsk L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: task_rbf_changes_at tsk A
IN: A \in iota 0 L
ts_l, ts_r: seq Task
EQ: ts = ts_l ++ [:: tsk] ++ ts_r

A \in search_space_emax_FP L tsk
by eapply task_search_space_subset; eauto.
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: bound_on_total_hep_workload_changes_at ts tsk A
IN: A \in iota 0 L

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
CH: bound_on_total_hep_workload_changes_at ts tsk A
IN: A \in iota 0 L

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
ts: seq Task
H_valid_task_set: task_set_with_valid_arrivals ts
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts -> 0 < task_cost tsk
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
tsk: Task
H_tsk_in_ts: tsk \in ts
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
tsko: Task
INts: tsko \in ts
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)

A \in \cat_(tsko<-ts) task_search_space_emax_EDF tsk tsko L
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)

A \in \cat_(tsko<-(ts_l ++ [:: tsko] ++ ts_r)) task_search_space_emax_EDF tsk tsko L
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

A \in \cat_(tsko<-(ts_l ++ [:: tsko] ++ ts_r)) task_search_space_emax_EDF tsk tsko L
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

exists2 x : Datatypes_nat__canonical__eqtype_Equality, x \in shift_points_neg (shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko)) (task_deadline tsk) & A = x.-1
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

A.+1 \in shift_points_neg (shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko)) (task_deadline tsk)
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

A.+1 + task_deadline tsk \in [seq x <- shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko) | task_deadline tsk <= x]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

A.+1 + task_deadline tsk \in shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko)
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

task_deadline tsko <= A + task_deadline tsk
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
A.+1 + task_deadline tsk \in shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko)
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r

task_deadline tsko <= A + task_deadline tsk
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
CONTR: A + task_deadline tsk < task_deadline tsko

False
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
CONTR: A + task_deadline tsk < task_deadline tsko
Z1: A + task_deadline tsk - task_deadline tsko = 0

False
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
CONTR: A + task_deadline tsk < task_deadline tsko
Z1: A + task_deadline tsk - task_deadline tsko = 0
Z2: A + 1 + task_deadline tsk - task_deadline tsko = 0

False
by rewrite Z1 Z2 eq_refl in NEQ.
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk

A.+1 + task_deadline tsk \in shift_points_pos (repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]) (task_deadline tsko)
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk

A.+1 + task_deadline tsk - task_deadline tsko \in repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ get_horizon_of_task tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration

forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration

forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
B: Datatypes_nat__canonical__eqtype_Equality
L': nat
C: Datatypes_nat__canonical__eqtype_Equality
INC: C \in repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 (L' %/ get_horizon_of_task tsko).+1]
EQC: B = C.-1

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
B: Datatypes_nat__canonical__eqtype_Equality
L': nat
C: Datatypes_nat__canonical__eqtype_Equality
INC: C \in repeat_steps_with_offset tsko [seq get_horizon_of_task tsko * i | i <- iota 0 (L' %/ get_horizon_of_task tsko).+1]
EQC: B = C.-1
POS: 0 < C

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
by rewrite EQC prednK.
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk < task_deadline tsko
A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk
NEQ: task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko)) != task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko) + 1)

A.+1 + (task_deadline tsk - task_deadline tsko) \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk
NEQ: task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko)) != task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko) + 1)

(A + (task_deadline tsk - task_deadline tsko)).+1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk
NEQ: task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko)) != task_request_bound_function tsko (A + (concept.task_deadline tsk - concept.task_deadline tsko) + 1)
B:= A + (task_deadline tsk - task_deadline tsko): nat

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk
B:= A + (task_deadline tsk - task_deadline tsko): nat
CH: task_rbf_changes_at tsko B

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsko <= task_deadline tsk
B:= A + (task_deadline tsk - task_deadline tsko): nat
CH: task_rbf_changes_at tsko B
LTB: B < L + (task_deadline tsk - task_deadline tsko)

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
by apply IN_RTO; last by eapply task_search_space_subset; eauto.
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk < task_deadline tsko

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk < task_deadline tsko

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
NEQ: task_request_bound_function tsko (A + concept.task_deadline tsk - concept.task_deadline tsko) != task_request_bound_function tsko (A + 1 + concept.task_deadline tsk - concept.task_deadline tsko)
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko
NEQ: task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk)) != task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk) + 1)

A.+1 + task_deadline tsk - task_deadline tsko \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko
NEQ: task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk)) != task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk) + 1)

A - (task_deadline tsko - task_deadline tsk) + 1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko
NEQ: task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk)) != task_request_bound_function tsko (A - (concept.task_deadline tsko - concept.task_deadline tsk) + 1)
B:= A - (task_deadline tsko - task_deadline tsk): nat

B + 1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko
B:= A - (task_deadline tsko - task_deadline tsk): nat
CH: task_rbf_changes_at tsko B

B + 1 \in rto tsko [seq ght tsko * i | i <- iota 0 ((L + (task_deadline tsk - task_deadline tsko)) %/ ght tsko).+1]
L: duration
tsko: Task
ts_l, ts_r: seq Task
H_all_tsk_positive_step: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < (head (0, 0) (steps_of (get_arrival_curve_prefix tsk))).1
H_all_tsk_positive_cost: forall tsk : Task, tsk \in ts_l ++ [:: tsko] ++ ts_r -> 0 < task_cost tsk
H_valid_task_set: task_set_with_valid_arrivals (ts_l ++ [:: tsko] ++ ts_r)
tsk: Task
H_tsk_in_ts: tsk \in ts_l ++ [:: tsko] ++ ts_r
A: Datatypes_nat__canonical__eqtype_Equality
LT: A < L
IN: A \in iota 0 L
NEQtsk: tsk != tsko
INts: tsko \in ts_l ++ [:: tsko] ++ ts_r
AD: task_deadline tsko <= A + task_deadline tsk
rto:= repeat_steps_with_offset: task.Task -> seq nat -> seq nat
ght:= get_horizon_of_task: task.Task -> duration
IN_RTO: forall (B : Datatypes_nat__canonical__eqtype_Equality) (L' : nat), B \in search_space_emax_FP L' tsko -> B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L' %/ ght tsko).+1]
EE: task_deadline tsk <= task_deadline tsko
B:= A - (task_deadline tsko - task_deadline tsk): nat
CH: task_rbf_changes_at tsko B

B.+1 \in rto tsko [seq ght tsko * i | i <- iota 0 (L %/ ght tsko).+1]
by apply IN_RTO; last eapply task_search_space_subset; eauto 2; unfold B; lia. } } Qed. End FastSearchSpaceComputationSubset.