Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-paramcoq.plugin is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file paramcoq.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.implementation.definitions.arrival_bound. (** In this section, we define a generic version of arrival bound and prove that it is isomorphic to the standard, natural-number-based definition. *) Section Definitions. (** Consider a generic type [T], for which all the basic arithmetical operations, ordering, and equality are defined. *) Context {T : Type}. Context `{!zero_of T, !one_of T, !sub_of T, !add_of T, !mul_of T, !div_of T, !mod_of T, !eq_of T, !leq_of T, !lt_of T}. Context `{!eq_of (seq T)}. Context `{!eq_of (T * seq (T * T))}. (** As in the natural-numbers-based definition, an arrival curve prefix is composed of an horizon and a list of steps. *) Let ArrivalCurvePrefix : Type := T * seq (T * T). (** A task's arrival bound is an inductive type comprised of three types of arrival patterns: (a) periodic, characterized by a period between consequent activation of a task, (b) sporadic, characterized by a minimum inter-arrival time, or (c) arrival-curve prefix, characterized by a finite prefix of an arrival curve. *) Inductive task_arrivals_bound_T := | Periodic_T : T -> task_arrivals_bound_T | Sporadic_T : T -> task_arrivals_bound_T | ArrivalPrefix_T : T * seq (T * T) -> task_arrivals_bound_T. (** Further, we define the equality for two generic tasks as the equality of each attribute. *) Definition taskab_eqdef_T (tb1 tb2 : task_arrivals_bound_T) : bool := match tb1, tb2 with | Periodic_T p1, Periodic_T p2 => (p1 == p2)%C | Sporadic_T s1, Sporadic_T s2 => (s1 == s2)%C | ArrivalPrefix_T s1, ArrivalPrefix_T s2 => (s1 == s2)%C | _, _ => false end. (** The first component of arrival-curve prefix [ac_prefix] is called horizon. *) Definition horizon_of_T (ac_prefix_vec : T * seq (T * T)) := fst ac_prefix_vec. (** The second component of [ac_prefix] is called steps. *) Definition steps_of_T (ac_prefix_vec : T * seq (T * T)) := snd ac_prefix_vec. (** The time steps of [ac_prefix] are the first components of the steps. That is, these are time instances before the horizon where the corresponding arrival curve makes a step. *) Definition time_steps_of_T (ac_prefix_vec : T * seq (T * T)) := map fst (steps_of_T ac_prefix_vec). (** The function [step_at] returns the last step ([duration × value]) such that [duration ≤ t]. *) Definition step_at_T (ac_prefix_vec : T * seq (T * T)) (t : T) := (last (0, 0) [ seq step <- steps_of_T ac_prefix_vec | fst step <= t ])%C. (** The function [value_at] returns the _value_ of the last step ([duration × value]) such that [duration ≤ t] *) Definition value_at_T (ac_prefix_vec : T * seq (T * T)) (t : T) := snd (step_at_T ac_prefix_vec t). (** Finally, we define a generic version of the function [extrapolated_arrival_curve] that performs the periodic extension of the arrival-curve prefix (and hence, defines an arrival curve). *) Definition extrapolated_arrival_curve_T (ac_prefix_vec : T * seq (T * T)) (t : T) := let h := horizon_of_T ac_prefix_vec in (t %/ h * value_at_T ac_prefix_vec h + value_at_T ac_prefix_vec (t %% h))%C. (** Steps should be strictly increasing both in time steps and values. *) Definition ltn_steps_T (a b : T * T) := (fst a < fst b)%C && (snd a < snd b)%C. Definition sorted_ltn_steps_T (ac_prefix : ArrivalCurvePrefix) := sorted ltn_steps_T (steps_of_T ac_prefix). (** We also define a predicate for non-decreasing order that is more convenient for proving some of the claims. *) Definition leq_steps_T (a b : T * T) := (fst a <= fst b)%C && (snd a <= snd b)%C. (** Horizon should be positive. *) Definition positive_horizon_T (ac_prefix : ArrivalCurvePrefix) := (0 < horizon_of_T ac_prefix)%C. (** Horizon should bound time steps. *) Definition large_horizon_T (ac_prefix : ArrivalCurvePrefix) : bool := all (fun s => s <= horizon_of_T ac_prefix)%C (time_steps_of_T ac_prefix). (** There should be no infinite arrivals; that is, [value_at 0 = 0]. *) Definition no_inf_arrivals_T (ac_prefix : ArrivalCurvePrefix) := (value_at_T ac_prefix 0 == 0)%C. (** Bursts must be specified; that is, [steps_of] should contain a pair [(ε, b)]. *) Definition specified_bursts_T (ac_prefix : ArrivalCurvePrefix) := has (fun step => step == 1)%C (time_steps_of_T ac_prefix). (** The conjunction of the 5 afore-defined properties defines a valid arrival-curve prefix. *) Definition valid_extrapolated_arrival_curve_T (ac_prefix : ArrivalCurvePrefix) : bool := positive_horizon_T ac_prefix && large_horizon_T ac_prefix && no_inf_arrivals_T ac_prefix && specified_bursts_T ac_prefix && sorted_ltn_steps_T ac_prefix. End Definitions. Section Translation. (** First, we define the function that maps a generic arrival-curve prefix to a natural-number one... *) Definition ACPrefixT_to_ACPrefix (ac_prefix_vec_T : N * seq (N * N)) : ArrivalCurvePrefix := (nat_of_bin (horizon_of_T ac_prefix_vec_T), m_tb2tn (steps_of_T ac_prefix_vec_T)). (** ... and its function relationship. *) Definition RArrivalCurvePrefix := fun_hrel ACPrefixT_to_ACPrefix. (** Next, we define the converse function, mapping a natural-number arrival-curve prefix task to a generic one. *) Definition ACPrefix_to_ACPrefixT (ac_prefix_vec : ArrivalCurvePrefix) : (N * seq (N * N)) := (bin_of_nat (horizon_of ac_prefix_vec), m_tn2tb (steps_of ac_prefix_vec)). (** Further, we define the function that maps a generic task arrival-bound to a natural-number one... *) Definition task_abT_to_task_ab (ab : @task_arrivals_bound_T N) : task_arrivals_bound := match ab with | Periodic_T p => Periodic p | Sporadic_T m => Sporadic m | ArrivalPrefix_T ac_prefix_vec => ArrivalPrefix (ACPrefixT_to_ACPrefix ac_prefix_vec) end. (** ... and its function relationship. *) Definition Rtask_ab := fun_hrel task_abT_to_task_ab. (** Finally, we define the converse function, mapping a natural-number task arrival-bound task to a generic one. *) Definition task_ab_to_task_abT (ab : task_arrivals_bound) : @task_arrivals_bound_T N := match ab with | Periodic p => Periodic_T (bin_of_nat p) | Sporadic m => Sporadic_T (bin_of_nat m) | ArrivalPrefix ac_prefix_vec => ArrivalPrefix_T (ACPrefix_to_ACPrefixT ac_prefix_vec) end. End Translation. Section Lemmas. (** We prove that [leq_steps_T] is transitive... *)

transitive (T:=N * N) leq_steps_T

transitive (T:=N * N) leq_steps_T
a, b, c: (N * N)%type
FSTab: (b.1 <= a.1)%C
SNDab: (b.2 <= a.2)%C
FSTbc: (a.1 <= c.1)%C
SNDbc: (a.2 <= c.2)%C

leq_steps_T b c
a, b, c: (N * N)%type
FSTab: (b.1 <= a.1)%C
SNDab: (b.2 <= a.2)%C
FSTbc: (a.1 <= c.1)%C
SNDbc: (a.2 <= c.2)%C

(b.1 <= c.1)%C && (b.2 <= c.2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 <= a1)%C
SNDab: (b2 <= a2)%C
FSTbc: (a1 <= c1)%C
SNDbc: (a2 <= c2)%C

(b1 <= c1)%C && (b2 <= c2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 <= a1)%C
SNDab: (b2 <= a2)%C
FSTbc: (a1 <= c1)%C
SNDbc: (a2 <= c2)%C

(b1 <= c1)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 <= a1)%C
SNDab: (b2 <= a2)%C
FSTbc: (a1 <= c1)%C
SNDbc: (a2 <= c2)%C
(b2 <= c2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 <= a1)%C
SNDab: (b2 <= a2)%C
FSTbc: (a1 <= c1)%C
SNDbc: (a2 <= c2)%C

(b1 <= c1)%C
by apply /N.leb_spec0; eapply N.le_trans; [apply /N.leb_spec0; apply FSTab | apply /N.leb_spec0; apply FSTbc].
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 <= a1)%C
SNDab: (b2 <= a2)%C
FSTbc: (a1 <= c1)%C
SNDbc: (a2 <= c2)%C

(b2 <= c2)%C
by apply /N.leb_spec0; eapply N.le_trans; [apply /N.leb_spec0; apply SNDab | apply /N.leb_spec0; apply SNDbc]. Qed. (** ... and so is [ltn_steps_T]. *)

transitive (T:=N * N) ltn_steps_T

transitive (T:=N * N) ltn_steps_T
a, b, c: (N * N)%type
FSTab: (b.1 < a.1)%C
SNDab: (b.2 < a.2)%C
FSTbc: (a.1 < c.1)%C
SNDbc: (a.2 < c.2)%C

ltn_steps_T b c
a, b, c: (N * N)%type
FSTab: (b.1 < a.1)%C
SNDab: (b.2 < a.2)%C
FSTbc: (a.1 < c.1)%C
SNDbc: (a.2 < c.2)%C

(b.1 < c.1)%C && (b.2 < c.2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 < a1)%C
SNDab: (b2 < a2)%C
FSTbc: (a1 < c1)%C
SNDbc: (a2 < c2)%C

(b1 < c1)%C && (b2 < c2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 < a1)%C
SNDab: (b2 < a2)%C
FSTbc: (a1 < c1)%C
SNDbc: (a2 < c2)%C

(b1 < c1)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 < a1)%C
SNDab: (b2 < a2)%C
FSTbc: (a1 < c1)%C
SNDbc: (a2 < c2)%C
(b2 < c2)%C
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 < a1)%C
SNDab: (b2 < a2)%C
FSTbc: (a1 < c1)%C
SNDbc: (a2 < c2)%C

(b1 < c1)%C
by apply /N.ltb_spec0; eapply N.lt_trans; [apply /N.ltb_spec0; apply FSTab | apply /N.ltb_spec0; apply FSTbc].
a1, a2, b1, b2, c1, c2: N
FSTab: (b1 < a1)%C
SNDab: (b2 < a2)%C
FSTbc: (a1 < c1)%C
SNDbc: (a2 < c2)%C

(b2 < c2)%C
by apply /N.ltb_spec0; eapply N.lt_trans; [apply /N.ltb_spec0; apply SNDab | apply /N.ltb_spec0; apply SNDbc]. Qed. End Lemmas. (** In this fairly technical section, we prove a series of refinements aimed to be able to convert between a standard natural-number task and a generic task. *) Section Refinements. (** We prove the refinement for the [leq_steps] function. *)

refines (prod_R Rnat Rnat ==> prod_R Rnat Rnat ==> bool_R) leq_steps leq_steps_T

refines (prod_R Rnat Rnat ==> prod_R Rnat Rnat ==> bool_R) leq_steps leq_steps_T
a: (nat * nat)%type
a': (N * N)%type
Ra: prod_R Rnat Rnat a a'
b: (nat * nat)%type
b': (N * N)%type
Rb: prod_R Rnat Rnat b b'

bool_R ((a.1 <= b.1) && (a.2 <= b.2)) ((a'.1 <= b'.1)%C && (a'.2 <= b'.2)%C)
by apply refinesP; refines_apply. Qed. (** Next, we prove the refinement for the [ltn_steps] function. *)

refines (prod_R Rnat Rnat ==> prod_R Rnat Rnat ==> bool_R) ltn_steps ltn_steps_T

refines (prod_R Rnat Rnat ==> prod_R Rnat Rnat ==> bool_R) ltn_steps ltn_steps_T
a: (nat * nat)%type
a': (N * N)%type
Ra: prod_R Rnat Rnat a a'
b: (nat * nat)%type
b': (N * N)%type
Rb: prod_R Rnat Rnat b b'

bool_R ((a.1 < b.1) && (a.2 < b.2)) ((a'.1 < b'.1)%C && (a'.2 < b'.2)%C)
a1, a2: nat
a1', a2': N
Ra: prod_R Rnat Rnat (a1, a2) (a1', a2')
b1, b2: nat
b1', b2': N
Rb: prod_R Rnat Rnat (b1, b2) (b1', b2')

bool_R ((a1 < b1) && (a2 < b2)) ((a1' < b1')%C && (a2' < b2')%C)
a1, a2: nat
a1', a2': N
Ra: prod_R Rnat Rnat (a1, a2) (a1', a2')
b1, b2: nat
b1', b2': N
Rb: prod_R Rnat Rnat (b1, b2) (b1', b2')
a_R: Rnat a1 a1'
b_R: Rnat a2 a2'

bool_R ((a1 < b1) && (a2 < b2)) ((a1' < b1')%C && (a2' < b2')%C)
a1, a2: nat
a1', a2': N
Ra: prod_R Rnat Rnat (a1, a2) (a1', a2')
b1, b2: nat
b1', b2': N
Rb: prod_R Rnat Rnat (b1, b2) (b1', b2')
a_R: Rnat a1 a1'
b_R: Rnat a2 a2'
a_R0: Rnat b1 b1'
b_R0: Rnat b2 b2'

bool_R ((a1 < b1) && (a2 < b2)) ((a1' < b1')%C && (a2' < b2')%C)
by apply andb_R; apply refine_ltn. Qed. (** Next, we prove the refinement for the [ACPrefixT_to_ACPrefix] function. *)

refines (unify (A:=N * seq (N * N)) ==> prod_R Rnat (list_R (prod_R Rnat Rnat))) ACPrefixT_to_ACPrefix id

refines (unify (A:=N * seq (N * N)) ==> prod_R Rnat (list_R (prod_R Rnat Rnat))) ACPrefixT_to_ACPrefix id
evec, evec': (N * seq (N * N))%type
Revec: unify evec evec'

prod_R Rnat (list_R (prod_R Rnat Rnat)) (ACPrefixT_to_ACPrefix evec) evec'
evec: (N * seq (N * N))%type

prod_R Rnat (list_R (prod_R Rnat Rnat)) (ACPrefixT_to_ACPrefix evec) evec
h: N
st: seq (N * N)

prod_R Rnat (list_R (prod_R Rnat Rnat)) (ACPrefixT_to_ACPrefix (h, st)) (h, st)
h: N
st: seq (N * N)

Rnat (horizon_of_T (h, st)) h
h: N
st: seq (N * N)
list_R (prod_R Rnat Rnat) (m_tb2tn (steps_of_T (h, st))) st
h: N
st: seq (N * N)

Rnat (horizon_of_T (h, st)) h
by compute.
h: N
st: seq (N * N)

list_R (prod_R Rnat Rnat) (m_tb2tn (steps_of_T (h, st))) st

list_R (prod_R Rnat Rnat) (m_tb2tn [::]) [::]
a: (N * N)%type
st: seq (N * N)
IHst: list_R (prod_R Rnat Rnat) (m_tb2tn st) st
list_R (prod_R Rnat Rnat) (m_tb2tn (a :: st)) (a :: st)

list_R (prod_R Rnat Rnat) (m_tb2tn [::]) [::]
apply list_R_nil_R.
a: (N * N)%type
st: seq (N * N)
IHst: list_R (prod_R Rnat Rnat) (m_tb2tn st) st

list_R (prod_R Rnat Rnat) (m_tb2tn (a :: st)) (a :: st)
a: (N * N)%type
st: seq (N * N)
IHst: list_R (prod_R Rnat Rnat) (m_tb2tn st) st

prod_R Rnat Rnat (tb2tn a) a
n, n0: N
st: seq (N * N)
IHst: list_R (prod_R Rnat Rnat) (m_tb2tn st) st

prod_R Rnat Rnat (n, n0) (n, n0)
by apply refinesP; refines_apply. Qed. (** Next, we prove the refinement for the [ltn_steps_sorted] function. *)

forall (xs : seq (nat * nat)) (xs' : seq (N * N)), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')

forall (xs : seq (nat * nat)) (xs' : seq (N * N)), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] xs'

refines bool_R (sorted ltn_steps [::]) (sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'
refines bool_R (sorted ltn_steps (x :: xs)) (sorted ltn_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] xs'

refines bool_R (sorted ltn_steps [::]) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] (x' :: xs')

refines bool_R (sorted ltn_steps [::]) (sorted ltn_steps_T (x' :: xs'))
by rewrite refinesE in Rxs; inversion Rxs.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'

refines bool_R (sorted ltn_steps (x :: xs)) (sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'

refines bool_R (sorted ltn_steps (x :: xs)) (sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (sorted ltn_steps (x :: xs)) (sorted ltn_steps_T (x' :: xs'))
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=nat * nat) ltn_steps
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
transitive (T:=N * N) ltn_steps_T
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
refines bool_R (all (ltn_steps x) xs && sorted ltn_steps xs) (all (ltn_steps_T x') xs' && sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=nat * nat) ltn_steps
by apply ltn_steps_is_transitive.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=N * N) ltn_steps_T
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
refines bool_R (all (ltn_steps x) xs && sorted ltn_steps xs) (all (ltn_steps_T x') xs' && sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=N * N) ltn_steps_T
by apply ltn_stepsT_is_transitive.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (all (ltn_steps x) xs && sorted ltn_steps xs) (all (ltn_steps_T x') xs' && sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (all (ltn_steps x) xs && sorted ltn_steps xs) (all (ltn_steps_T x') xs' && sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

refines bool_R (all (ltn_steps x) xs && sorted ltn_steps xs) (all (ltn_steps_T x') xs' && sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (all (ltn_steps x) xs) (all (ltn_steps_T x') xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'
bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (all (ltn_steps x) xs) (all (ltn_steps_T x') xs')
apply refinesP; refines_apply.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (sorted ltn_steps xs) (sorted ltn_steps_T xs')
by apply refinesP; apply IHxs; rewrite refinesE. } } Qed. (** Next, we prove the refinement for the [leq_steps_sorted] function. *)

forall (xs : seq (nat * nat)) (xs' : seq (N * N)), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')

forall (xs : seq (nat * nat)) (xs' : seq (N * N)), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] xs'

refines bool_R (sorted leq_steps [::]) (sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'
refines bool_R (sorted leq_steps (x :: xs)) (sorted leq_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] xs'

refines bool_R (sorted leq_steps [::]) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) [::] (x' :: xs')

refines bool_R (sorted leq_steps [::]) (sorted leq_steps_T (x' :: xs'))
by rewrite refinesE in Rxs; inversion Rxs.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'

refines bool_R (sorted leq_steps (x :: xs)) (sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) xs'

refines bool_R (sorted leq_steps (x :: xs)) (sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (sorted leq_steps (x :: xs)) (sorted leq_steps_T (x' :: xs'))
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=nat * nat) leq_steps
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
transitive (T:=N * N) leq_steps_T
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
refines bool_R (all (leq_steps x) xs && sorted leq_steps xs) (all (leq_steps_T x') xs' && sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=nat * nat) leq_steps
by apply leq_steps_is_transitive.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=N * N) leq_steps_T
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')
refines bool_R (all (leq_steps x) xs && sorted leq_steps xs) (all (leq_steps_T x') xs' && sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

transitive (T:=N * N) leq_steps_T
by apply leq_stepsT_is_transitive.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (all (leq_steps x) xs && sorted leq_steps xs) (all (leq_steps_T x') xs' && sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: refines (list_R (prod_R Rnat Rnat)) (x :: xs) (x' :: xs')

refines bool_R (all (leq_steps x) xs && sorted leq_steps xs) (all (leq_steps_T x') xs' && sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

refines bool_R (all (leq_steps x) xs && sorted leq_steps xs) (all (leq_steps_T x') xs' && sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (all (leq_steps x) xs) (all (leq_steps_T x') xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'
bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (all (leq_steps x) xs) (all (leq_steps_T x') xs')
by apply refinesP; refines_apply.
x: (nat * nat)%type
xs: seq (nat * nat)
IHxs: forall xs' : seq (N * N), refines (list_R (prod_R Rnat Rnat)) xs xs' -> refines bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
x': (N * N)%type
xs': seq (N * N)
Rxs: list_R (prod_R Rnat Rnat) (x :: xs) (x' :: xs')
a_R: prod_R Rnat Rnat x x'
l_R: list_R (prod_R Rnat Rnat) xs xs'

bool_R (sorted leq_steps xs) (sorted leq_steps_T xs')
by apply refinesP; apply IHxs; rewrite refinesE. } } Qed. (** Next, we prove the refinement for the [value_at] function. *)

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rnat ==> Rnat) value_at value_at_T

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rnat ==> Rnat) value_at value_at_T
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

Rnat (value_at evec δ) (value_at_T evec' δ')
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]).2 (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C]).2
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
RP: refines (prod_R Rnat Rnat ==> Rnat) snd snd

Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]).2 (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C]).2
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
RP: (prod_R Rnat Rnat ==> Rnat)%rel snd snd

Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]).2 (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C]).2
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

prod_R Rnat Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]) (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C])
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
RL: refines (prod_R Rnat Rnat ==> list_R (prod_R Rnat Rnat) ==> prod_R Rnat Rnat) last last

prod_R Rnat Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]) (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C])
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
RL: (prod_R Rnat Rnat ==> list_R (prod_R Rnat Rnat) ==> prod_R Rnat Rnat)%rel last last

prod_R Rnat Rnat (last (0, 0) [seq step <- steps_of evec | step.1 <= δ]) (last (0%C, 0%C) [seq step <- steps_of_T evec' | (step.1 <= δ')%C])
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

prod_R Rnat Rnat (0, 0) (0%C, 0%C)
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
list_R (prod_R Rnat Rnat) [seq step <- steps_of evec | step.1 <= δ] [seq step <- steps_of_T evec' | (step.1 <= δ')%C]
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

prod_R Rnat Rnat (0, 0) (0%C, 0%C)
by apply refinesP; refines_apply.
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

list_R (prod_R Rnat Rnat) [seq step <- steps_of evec | step.1 <= δ] [seq step <- steps_of_T evec' | (step.1 <= δ')%C]
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

forall (t₁ : nat * nat) (t₂ : N * N), prod_R Rnat Rnat t₁ t₂ -> bool_R (t₁.1 <= δ) (t₂.1 <= δ')%C
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
list_R (prod_R Rnat Rnat) (steps_of evec) (steps_of_T evec')
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

forall (t₁ : nat * nat) (t₂ : N * N), prod_R Rnat Rnat t₁ t₂ -> bool_R (t₁.1 <= δ) (t₂.1 <= δ')%C
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'
n1: nat
n1': N
Rn1: Rnat n1 n1'

bool_R (n1 <= δ) (n1' <= δ')%C
by apply: refinesP; apply: refines_apply.
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

list_R (prod_R Rnat Rnat) (steps_of evec) (steps_of_T evec')
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

list_R (prod_R Rnat Rnat) evec.2 evec'.2
by apply refinesP; refines_apply. Qed. (** Next, we prove the refinement for the [time_steps_of] function. *)

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> list_R Rnat) time_steps_of time_steps_of_T

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> list_R Rnat) time_steps_of time_steps_of_T
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'

list_R Rnat (time_steps_of evec) (time_steps_of_T evec')
h: nat
st: seq (nat * nat)
h': N
st': seq (N * N)
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) (h, st) (h', st')

list_R Rnat (time_steps_of (h, st)) (time_steps_of_T (h', st'))
h: nat
st: seq (nat * nat)
h': N
st': seq (N * N)
n1: nat
n1': N
Rn1: Rnat n1 n1'
n2: seq (nat * nat)
n2': seq (N * N)
Rn2: list_R (prod_R Rnat Rnat) n2 n2'

list_R Rnat (time_steps_of (n1, n2)) (time_steps_of_T (n1', n2'))
by apply: refinesP; apply: refines_apply. Qed. (** Next, we prove the refinement for the [extrapolated_arrival_curve] function. *)

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rnat ==> Rnat) extrapolated_arrival_curve extrapolated_arrival_curve_T

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rnat ==> Rnat) extrapolated_arrival_curve extrapolated_arrival_curve_T
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

Rnat (extrapolated_arrival_curve evec δ) (extrapolated_arrival_curve_T evec' δ')
evec: (nat * seq (nat * nat))%type
evec': (N * seq (N * N))%type
Revec: prod_R Rnat (list_R (prod_R Rnat Rnat)) evec evec'
δ: nat
δ': N
: Rnat δ δ'

Rnat (δ %/ horizon_of evec * value_at evec (horizon_of evec) + value_at evec (δ %% horizon_of evec)) (δ' %/ horizon_of_T evec' * value_at_T evec' (horizon_of_T evec') + value_at_T evec' (δ' %% horizon_of_T evec'))%C
by apply refinesP; refines_apply. Qed. (** Next, we prove the refinement for the [ArrivalCurvePrefix] function. *)

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rtask_ab) ArrivalPrefix ArrivalPrefix_T

refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> Rtask_ab) ArrivalPrefix ArrivalPrefix_T
arrival_curve_prefix: (nat * seq (nat * nat))%type
arrival_curve_prefix': (N * seq (N * N))%type
Rarrival_curve_prefix: prod_R Rnat (list_R (prod_R Rnat Rnat)) arrival_curve_prefix arrival_curve_prefix'

Rtask_ab (ArrivalPrefix arrival_curve_prefix) (ArrivalPrefix_T arrival_curve_prefix')
h: nat
steps: seq (nat * nat)
h': N
steps': seq (N * N)
Rarrival_curve_prefix: prod_R Rnat (list_R (prod_R Rnat Rnat)) (h, steps) (h', steps')

Rtask_ab (ArrivalPrefix (h, steps)) (ArrivalPrefix_T (h', steps'))
h: nat
h': N
Rh: Rnat h h'
steps: seq (nat * nat)
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) steps steps'

Rtask_ab (ArrivalPrefix (h, steps)) (ArrivalPrefix_T (h', steps'))
h: nat
h': N
Rh: Rnat h h'
steps: seq (nat * nat)
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) steps steps'

ArrivalPrefix (h', m_tb2tn steps') = ArrivalPrefix (h, steps)
h: nat
h': N
Rh: Rnat h h'
steps: seq (nat * nat)
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) steps steps'

ArrivalPrefix (h, m_tb2tn steps') = ArrivalPrefix (h, steps)
h: nat
h': N
Rh: Rnat h h'
steps: seq (nat * nat)
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) steps steps'

m_tb2tn steps' = steps
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) [::] steps'

m_tb2tn steps' = [::]
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) (a :: steps) steps'
m_tb2tn steps' = a :: steps
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) [::] steps'

m_tb2tn steps' = [::]
by destruct steps'; [done | inversion Rsteps].
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) (a :: steps) steps'

m_tb2tn steps' = a :: steps
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
p: (N * N)%type
steps': seq (N * N)
Rsteps: list_R (prod_R Rnat Rnat) (a :: steps) (p :: steps')

m_tb2tn (p :: steps') = a :: steps
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
p: (N * N)%type
steps': seq (N * N)
Rap: prod_R Rnat Rnat a p
Rstep: list_R (prod_R Rnat Rnat) steps steps'

m_tb2tn (p :: steps') = a :: steps
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
p: (N * N)%type
steps': seq (N * N)
Rap: prod_R Rnat Rnat a p
Rstep: list_R (prod_R Rnat Rnat) steps steps'

(p.1, p.2) :: [seq (t.1, t.2) | t <- steps'] = a :: steps
a: (nat * nat)%type
steps: seq (nat * nat)
IHsteps: forall steps' : seq (N * N), list_R (prod_R Rnat Rnat) steps steps' -> m_tb2tn steps' = steps
p: (N * N)%type
steps': seq (N * N)
Rap: prod_R Rnat Rnat a p
Rstep: list_R (prod_R Rnat Rnat) steps steps'

[seq (t.1, t.2) | t <- steps'] = steps
exact: IHsteps. Qed. (** Next, we define some useful equality functions to guide the typeclass engine. *) Global Instance eq_listN : eq_of (seq N) := fun x y => x == y. Global Instance eq_NlistNN : eq_of (prod N (seq (prod N N))) := fun x y => x == y. Global Instance eq_taskab : eq_of (@task_arrivals_bound_T N) := taskab_eqdef_T. (** Finally, we prove the refinement for the [ArrivalCurvePrefix] function. *)

refines (Rtask_ab ==> Rtask_ab ==> bool_R) eq_op eq_taskab

refines (Rtask_ab ==> Rtask_ab ==> bool_R) eq_op eq_taskab
tb1: task_arrivals_bound
tb1': task_arrivals_bound_T
Rtb1: Rtask_ab tb1 tb1'
tb2: task_arrivals_bound
tb2': task_arrivals_bound_T
Rtb2: Rtask_ab tb2 tb2'

bool_R (tb1 == tb2) (eq_taskab tb1' tb2')
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')

bool_R (Periodic per1 == Periodic per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
per1: nat
spor1': N
Rtb1: Rtask_ab (Periodic per1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
per1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Periodic per1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Periodic per1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
spor1: nat
per1': N
Rtb1: Rtask_ab (Sporadic spor1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
spor1: nat
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (Sporadic spor1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (Sporadic spor1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
per1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Periodic_T per1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Periodic_T per1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
spor1': N
Rtb1: Rtask_ab (ArrivalPrefix evec1) (Sporadic_T spor1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (Sporadic_T spor1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
per2: nat
spor2': N
Rtb2: Rtask_ab (Periodic per2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
per2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Periodic per2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Periodic per2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
spor2: nat
per2': N
Rtb2: Rtask_ab (Sporadic spor2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
spor2: nat
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (Sporadic spor2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == Sporadic spor2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
per2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Periodic_T per2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Periodic_T per2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
spor2': N
Rtb2: Rtask_ab (ArrivalPrefix evec2) (Sporadic_T spor2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')

bool_R (Periodic per1 == Periodic per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')
bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')

bool_R (Periodic per1 == Periodic per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')

bool_R (per1 == per2) (eq_taskab (Periodic_T per1') (Periodic_T per2'))
per1: nat
per1': N
Rtb1: Rtask_ab (Periodic per1) (Periodic_T per1')
per2: nat
per2': N
Rtb2: Rtask_ab (Periodic per2) (Periodic_T per2')

bool_R (per1 == per2) (per1' == per2')
per1', per2': N

bool_R (per1' == per2') (per1' == per2')
by apply refinesP; refines_apply.
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')

bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')
bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')

bool_R (Sporadic spor1 == Sporadic spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')

bool_R (spor1 == spor2) (eq_taskab (Sporadic_T spor1') (Sporadic_T spor2'))
spor1: nat
spor1': N
Rtb1: Rtask_ab (Sporadic spor1) (Sporadic_T spor1')
spor2: nat
spor2': N
Rtb2: Rtask_ab (Sporadic spor2) (Sporadic_T spor2')

bool_R (spor1 == spor2) (spor1' == spor2')
spor1', spor2': N

bool_R (spor1' == spor2') (spor1' == spor2')
by apply refinesP; refines_apply.
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')

bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')

bool_R (ArrivalPrefix evec1 == ArrivalPrefix evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')

bool_R (evec1 == evec2) (eq_taskab (ArrivalPrefix_T evec1') (ArrivalPrefix_T evec2'))
evec1: ArrivalCurvePrefix
evec1': (N * seq (N * N))%type
Rtb1: Rtask_ab (ArrivalPrefix evec1) (ArrivalPrefix_T evec1')
evec2: ArrivalCurvePrefix
evec2': (N * seq (N * N))%type
Rtb2: Rtask_ab (ArrivalPrefix evec2) (ArrivalPrefix_T evec2')

bool_R (evec1 == evec2) (evec1' == evec2')%C
evec1', evec2': (N * seq (N * N))%type

bool_R (ACPrefixT_to_ACPrefix evec1' == ACPrefixT_to_ACPrefix evec2') (evec1' == evec2')%C
evec1, evec2: (N * seq (N * N))%type

bool_R (ACPrefixT_to_ACPrefix evec1 == ACPrefixT_to_ACPrefix evec2) (evec1 == evec2)%C
h1: N
evec1: seq (N * N)
h2: N
evec2: seq (N * N)

bool_R (ACPrefixT_to_ACPrefix (h1, evec1) == ACPrefixT_to_ACPrefix (h2, evec2)) ((h1, evec1) == (h2, evec2))%C
h1: N
evec1: seq (N * N)
h2: N
evec2: seq (N * N)

bool_R ((h1 == h2) && (m_tb2tn evec1 == m_tb2tn evec2)) ((h1, evec1) == (h2, evec2))%C
h1: N
evec1: seq (N * N)
h2: N
evec2: seq (N * N)

bool_R ((h1 == h2) && (m_tb2tn evec1 == m_tb2tn evec2)) ((h1 == h2) && (evec1 == evec2))
h1: N
evec1: seq (N * N)
h2: N
evec2: seq (N * N)

bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
h1: (N * N)%type
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)

forall evec2 : seq (N * N), bool_R (m_tb2tn (h1 :: evec1) == m_tb2tn evec2) (h1 :: evec1 == evec2)
h1: (N * N)%type
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
h2: (N * N)%type
evec2: seq (N * N)

bool_R (m_tb2tn (h1 :: evec1) == m_tb2tn (h2 :: evec2)) (h1 :: evec1 == h2 :: evec2)
h1: (N * N)%type
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
h2: (N * N)%type
evec2: seq (N * N)

bool_R ((tb2tn h1 == tb2tn h2) && (m_tb2tn evec1 == m_tb2tn evec2)) ((h1 == h2) && (evec1 == evec2))
h1: (N * N)%type
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
h2: (N * N)%type
evec2: seq (N * N)

bool_R (tb2tn h1 == tb2tn h2) (h1 == h2)
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
evec2: seq (N * N)
n, n0, n1, n2: N

bool_R (tb2tn (n, n0) == tb2tn (n1, n2)) ((n, n0) == (n1, n2))
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
evec2: seq (N * N)
n, n0, n1, n2: N

bool_R ((n, n0) == (n1, n2)) ((n, n0) == (n1, n2))
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
evec2: seq (N * N)
n, n0, n1, n2: N

bool_R ((n, n0) == (n1, n2)) ((n == n1) && (n0 == n2))
evec1: seq (N * N)
IHevec1: forall evec2 : seq (N * N), bool_R (m_tb2tn evec1 == m_tb2tn evec2) (evec1 == evec2)
evec2: seq (N * N)
n, n0, n1, n2: N

bool_R ((n == n1) && (n0 == n2)) ((n == n1) && (n0 == n2))
apply refinesP; refines_apply. } Qed. End Refinements.