Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing.
Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation"_ + _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ - _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ <= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ < _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ >= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ > _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Notation"_ <= _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]
Notation"_ < _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]
Notation"_ <= _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]
Notation"_ < _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]
Notation"_ * _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Require Export prosa.analysis.definitions.schedulability.Require Import prosa.model.readiness.basic.Require Import prosa.model.priority.edf.Require Import prosa.model.task.absolute_deadline.Require Import prosa.analysis.abstract.ideal.cumulative_bounds.Require Import prosa.analysis.facts.busy_interval.carry_in.Require Import prosa.analysis.facts.readiness.basic.Require Export prosa.analysis.abstract.ideal.abstract_seq_rta.Require Export prosa.analysis.facts.model.task_cost.Require Export prosa.analysis.facts.workload.edf_athep_bound.(** * Abstract RTA for EDF-schedulers with Bounded Priority Inversion *)(** In this module we instantiate the Abstract Response-Time analysis (aRTA) to EDF-schedulers for ideal uni-processor model of real-time tasks with arbitrary arrival models. *)(** Given EDF priority policy and an ideal uni-processor scheduler model, we can explicitly specify [interference], [interfering_workload], and [interference_bound_function]. In this settings, we can define natural notions of service, workload, busy interval, etc. The important feature of this instantiation is that we can induce the meaningful notion of priority inversion. However, we do not specify the exact cause of priority inversion (as there may be different reasons for this, like execution of a non-preemptive segment or blocking due to resource locking). We only assume that that a priority inversion is bounded. *)SectionAbstractRTAforEDFwithArrivalCurves.(** Consider any type of tasks ... *)Context {Task : TaskType}.Context `{TaskCost Task}.Context `{TaskDeadline Task}.Context `{TaskRunToCompletionThreshold Task}.Context `{TaskMaxNonpreemptiveSegment Task}.(** ... and any type of jobs associated with these tasks. *)Context {Job : JobType}.Context `{JobTask Job Task}.Context {Arrival : JobArrival Job}.Context {Cost : JobCost Job}.Context `{JobPreemptable Job}.(** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready. *)#[local] Existing Instancebasic_ready_instance.(** For clarity, let's denote the relative deadline of a task as D. *)LetDtsk := task_deadline tsk.(** Consider the EDF policy that indicates a higher-or-equal priority relation. Note that we do not relate the EDF policy with the scheduler. However, we define functions for Interference and Interfering Workload that actively use the concept of priorities. *)LetEDF := EDF Job.(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)Variablearr_seq : arrival_sequence Job.HypothesisH_valid_arrival_sequence : valid_arrival_sequence arr_seq.(** Next, consider any valid ideal uni-processor schedule of this arrival sequence that follows the scheduling policy. *)Variablesched : schedule (ideal.processor_state Job).HypothesisH_sched_valid : valid_schedule sched arr_seq.HypothesisH_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched EDF.(** To use the theorem [uniprocessor_response_time_bound_seq] from the Abstract RTA module, we need to specify functions of interference, interfering workload, and [task_IBF]. Next, we define interference and interfering workload; we return to [task_IBF] later. *)(** ** Instantiation of Interference *)(** We say that job [j] incurs interference at time [t] iff it cannot execute due to a higher-or-equal-priority job being scheduled, or if it incurs a priority inversion. *)#[local] Instanceideal_jlfp_interference : Interference Job :=
ideal_jlfp_interference arr_seq sched.(** ** Instantiation of Interfering Workload *)(** The interfering workload, in turn, is defined as the sum of the priority inversion function and interfering workload of jobs with higher or equal priority. *)#[local] Instanceideal_jlfp_interfering_workload : InterferingWorkload Job :=
ideal_jlfp_interfering_workload arr_seq sched.(** Note that we differentiate between abstract and classical notions of work-conserving schedule. *)Letwork_conserving_ab := definitions.work_conserving arr_seq sched.Letwork_conserving_cl := work_conserving.work_conserving arr_seq sched.(** We assume that the schedule is a work-conserving schedule in the _classical_ sense, and later prove that the hypothesis about abstract work-conservation also holds. *)HypothesisH_work_conserving : work_conserving_cl.(** Assume that a job cost cannot be larger than a task cost. *)HypothesisH_valid_job_cost :
arrivals_have_valid_job_costs arr_seq.(** Consider an arbitrary task set ts. *)Variablets : list Task.(** Next, we assume that all jobs come from the task set. *)HypothesisH_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.(** Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval delta = 0. *)Context `{MaxArrivals Task}.HypothesisH_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.HypothesisH_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.(** Let [tsk] be any task in ts that is to be analyzed. *)Variabletsk : Task.HypothesisH_tsk_in_ts : tsk \in ts.(** Consider a valid preemption model... *)HypothesisH_valid_preemption_model:
valid_preemption_model arr_seq sched.(** ...and a valid task run-to-completion threshold function. That is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *)HypothesisH_valid_run_to_completion_threshold:
valid_task_run_to_completion_threshold arr_seq tsk.(** We introduce [rbf] as an abbreviation of the task request bound function, which is defined as [task_cost(T) × max_arrivals(T,Δ)] for some task [T]. *)Letrbf := task_request_bound_function.(** Next, we introduce [task_rbf] as an abbreviation of the task request bound function of task [tsk]. *)Lettask_rbf := rbf tsk.(** Using the sum of individual request bound functions, we define the request bound function of all tasks (total request bound function). *)Lettotal_rbf := total_request_bound_function ts.(** Assume that there exists a bound on the length of any priority inversion experienced by any job of task [tsk]. Since we analyze only task [tsk], we ignore the lengths of priority inversions incurred by any other tasks. *)Variablepriority_inversion_bound : duration -> duration.HypothesisH_priority_inversion_is_bounded :
priority_inversion_is_bounded_by
arr_seq sched tsk priority_inversion_bound.(** Let [L] be any positive fixed point of the busy interval recurrence. *)VariableL : duration.HypothesisH_L_positive : L > 0.HypothesisH_fixed_point : L = total_rbf L.(** To reduce the time complexity of the analysis, we introduce the notion of search space for EDF. Intuitively, this corresponds to all "interesting" arrival offsets that the job under analysis might have with regard to the beginning of its busy-window. *)(** In the case of the search space for EDF, we consider three conditions. First, we ask whether [task_rbf A ≠ task_rbf (A + ε)]. *)Definitiontask_rbf_changes_at (A : duration) := task_rbf A != task_rbf (A + ε).(** Second, we ask whether there exists a task [tsko] from [ts] such that [tsko ≠ tsk] and [rbf(tsko, A + D tsk - D tsko) ≠ rbf(tsko, A + ε + D tsk - D tsko)]. Note that we use a slightly uncommon notation [has (λ tsko ⇒ P tskₒ) ts], which can be interpreted as follows: the task set [ts] contains a task [tsko] such that a predicate [P] holds for [tsko]. *)Definitionbound_on_total_hep_workload_changes_atA :=
has (funtsko =>
(tsk != tsko)
&& (rbf tsko (A + D tsk - D tsko)
!= rbf tsko ((A + ε) + D tsk - D tsko))) ts.(** Third, we ask whether [priority_inversion_bound (A - ε) ≠ priority_inversion_bound A]. *)Definitionpriority_inversion_changes_at (A : duration) :=
priority_inversion_bound (A - ε) != priority_inversion_bound A.(** The final search space for EDF is a set of offsets that are less than [L] and where [priority_inversion_bound], [task_rbf], or [bound_on_total_hep_workload] changes in value. *)Definitionis_in_search_space (A : duration) :=
(A < L) && (priority_inversion_changes_at A
|| task_rbf_changes_at A
|| bound_on_total_hep_workload_changes_at A).(** Let [R] be a value that upper-bounds the solution of each response-time recurrence, i.e., for any relative arrival time [A] in the search space, there exists a corresponding solution [F] such that [R >= F + (task cost - task lock-in service)]. *)VariableR : duration.HypothesisH_R_is_maximum :
forall (A : duration),
is_in_search_space A ->
exists (F : duration),
A + F >= priority_inversion_bound A
+ (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk))
+ bound_on_athep_workload ts tsk A (A + F) /\
R >= F + (task_cost tsk - task_rtct tsk).(** Finally, we define the interference bound function ([task_IBF]). [task_IBF] bounds the interference if tasks are sequential. Since tasks are sequential, we exclude interference from other jobs of the same task. For EDF, we define [task_IBF] as the sum of the priority interference bound and the higher-or-equal-priority workload. *)Lettask_IBF (AR : duration) :=
priority_inversion_bound A + bound_on_athep_workload ts tsk A R.(** ** Filling Out Hypothesis Of Abstract RTA Theorem *)(** In this section we prove that all hypotheses necessary to use the abstract theorem are satisfied. *)SectionFillingOutHypothesesOfAbstractRTATheorem.(** First, we prove that [task_IBF] is indeed a valid bound on the cumulative task interference. *)
byapply /eqP.Qed.(** Finally, we show that there exists a solution for the response-time recurrence. *)SectionSolutionOfResponseTimeReccurenceExists.(** To rule out pathological cases with the concrete search space, we assume that the task cost is positive and the arrival curve is non-pathological. *)HypothesisH_task_cost_pos : 0 < task_cost tsk.HypothesisH_arrival_curve_pos : 0 < max_arrivals tsk ε.(** Given any job [j] of task [tsk] that arrives exactly [A] units after the beginning of the busy interval, the bound of the total interference incurred by [j] within an interval of length [Δ] is equal to [task_rbf (A + ε) - task_cost tsk + task_IBF(A, Δ)]. *)Lettotal_interference_bound (AΔ : duration) :=
task_rbf (A + ε) - task_cost tsk + task_IBF A Δ.(** Next, consider any [A] from the search space (in the abstract sense). *)VariableA : duration.HypothesisH_A_is_in_abstract_search_space :
search_space.is_in_search_space L total_interference_bound A.(** We prove that A is also in the concrete search space. *)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) WL: ~~ bound_on_total_hep_workload_changes_at A tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk
task_request_bound_function tsk_i
(minn (A + D tsk - D tsk_i) x) =
task_request_bound_function tsk_i
(minn (A + 1 + D tsk - D tsk_i) x)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: {in ts,
forallx : Task,
~~
((tsk != x) &&
(rbf x (A + D tsk - D x)
!= rbf x (A + 1 + D tsk - D x)))}
task_request_bound_function tsk_i
(minn (A + D tsk - D tsk_i) x) =
task_request_bound_function tsk_i
(minn (A + 1 + D tsk - D tsk_i) x)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i)
task_request_bound_function tsk_i
(minn (A + D tsk - D tsk_i) x) =
task_request_bound_function tsk_i
(minn (A + 1 + D tsk - D tsk_i) x)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) ltn_x: A + 1 + D tsk - D tsk_i < x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) gtn_x: x < A + 1 + D tsk - D tsk_i
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i x
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) ltn_x: A + 1 + D tsk - D tsk_i < x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
byrewrite ifT //; lia.
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) gtn_x: x < A + 1 + D tsk - D tsk_i
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) = task_request_bound_function tsk_i x
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) gtn_x: x < A + 1 + D tsk - D tsk_i
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) = task_request_bound_function tsk_i x
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) gtn_x: x < A + 1 + D tsk - D tsk_i
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(if A + D tsk - D tsk_i < x
then A + D tsk - D tsk_i
else x) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(A + D tsk - D tsk_i) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i x =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i
(A + D tsk - D tsk_i) =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
byrewrite -/(rbf _) WL.
Task: TaskType H: TaskCost Task H0: TaskDeadline Task H1: TaskRunToCompletionThreshold Task H2: TaskMaxNonpreemptiveSegment Task Job: JobType H3: JobTask Job Task Arrival: JobArrival Job Cost: JobCost Job H4: JobPreemptable Job D:= [eta task_deadline]: Task -> duration EDF:= edf.EDF Job: JLFP_policy Job arr_seq: arrival_sequence Job H_valid_arrival_sequence: valid_arrival_sequence
arr_seq sched: schedule (ideal.processor_state Job) H_sched_valid: valid_schedule sched arr_seq H_respects_policy: respects_JLFP_policy_at_preemption_point
arr_seq sched EDF work_conserving_ab:= work_conserving arr_seq sched: Prop work_conserving_cl:= work_conserving.work_conserving
arr_seq sched: Prop H_work_conserving: work_conserving_cl H_valid_job_cost: arrivals_have_valid_job_costs
arr_seq ts: seq Task H_all_jobs_from_taskset: all_jobs_from_taskset
arr_seq ts H5: MaxArrivals Task H_valid_arrival_curve: valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve: taskset_respects_max_arrivals
arr_seq ts tsk: Task H_tsk_in_ts: tsk \in ts H_valid_preemption_model: valid_preemption_model
arr_seq sched H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold
arr_seq tsk rbf:= task_request_bound_function: Task -> duration -> nat task_rbf:= rbf tsk: duration -> nat total_rbf:= total_request_bound_function ts: duration -> nat priority_inversion_bound: duration -> duration H_priority_inversion_is_bounded: priority_inversion_is_bounded_by
arr_seq sched tsk
priority_inversion_bound L: duration H_L_positive: 0 < L H_fixed_point: L = total_rbf L R: duration H_R_is_maximum: forallA : duration,
is_in_search_space A ->
existsF : duration,
priority_inversion_bound A +
(task_rbf (A + 1) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F + (task_cost tsk - task_rtct tsk) <=
R task_IBF:= funAR : duration =>
priority_inversion_bound A +
bound_on_athep_workload ts tsk A R: duration -> duration -> nat H_task_cost_pos: 0 < task_cost tsk H_arrival_curve_pos: 0 < max_arrivals tsk 1 total_interference_bound:= funAΔ : duration =>
task_rbf (A + 1) -
task_cost tsk +
task_IBF A Δ: duration -> duration -> nat A: duration H_A_is_in_abstract_search_space: search_space.is_in_search_space
L
total_interference_bound
A POSA: 0 < A LTL: A < L x: nat LTx: x < L INSP2: total_interference_bound (A - 1) x <>
total_interference_bound A x PI: priority_inversion_bound (A - 1) =
priority_inversion_bound A RBF: task_rbf A = task_rbf (A + 1) tsk_i: Task TS: tsk_i \in ts OTHER: tsk_i != tsk WL: rbf tsk_i (A + D tsk - D tsk_i) =
rbf tsk_i (A + 1 + D tsk - D tsk_i) eq_x: A + 1 + D tsk - D tsk_i = x
task_request_bound_function tsk_i x =
task_request_bound_function tsk_i
(A + 1 + D tsk - D tsk_i)
byrewrite eq_x.}}Qed.(** Then, there exists solution for response-time recurrence (in the abstract sense). *)
task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) +
task_IBF A (A + F) <=
priority_inversion_bound A +
(task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A (A + F)
byrewrite addnA [_ + priority_inversion_bound A]addnC -!addnA.Qed.EndSolutionOfResponseTimeReccurenceExists.EndFillingOutHypothesesOfAbstractRTATheorem.(** ** Final Theorem *)(** Based on the properties established above, we apply the abstract analysis framework to infer that [R] is a response-time bound for [tsk]. *)