Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.results.edf.rta.bounded_nps. Require Export prosa.analysis.facts.preemption.task.nonpreemptive. Require Export prosa.analysis.facts.preemption.rtc_threshold.nonpreemptive. Require Export prosa.analysis.facts.readiness.basic. Require Export prosa.model.task.preemption.fully_nonpreemptive. Require Import prosa.model.priority.edf. (** * RTA for Fully Non-Preemptive EDF *) (** In this module we prove the RTA theorem for the fully non-preemptive EDF model. *) (** ** Setup and Assumptions *) Section RTAforFullyNonPreemptiveEDFModelwithArrivalCurves. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskDeadline Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** We assume that jobs and tasks are fully nonpreemptive. *) #[local] Existing Instance fully_nonpreemptive_job_model. #[local] Existing Instance fully_nonpreemptive_task_model. #[local] Existing Instance fully_nonpreemptive_rtc_threshold. (** Consider any arrival sequence with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** Consider an arbitrary task set ts, ... *) Variable ts : list Task. (** ... assume that all jobs come from this task set, ... *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** ... and the cost of a job cannot be larger than the task cost. *) Hypothesis H_valid_job_cost: arrivals_have_valid_job_costs arr_seq. (** Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval delta = 0. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Let [tsk] be any task in ts that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Next, consider any valid ideal non-preemptive uniprocessor schedule of this arrival sequence ... *) Variable sched : schedule (ideal.processor_state Job). Hypothesis H_sched_valid: valid_schedule sched arr_seq. Hypothesis H_nonpreemptive_sched : nonpreemptive_schedule sched. (** Next, we assume that the schedule is a work-conserving schedule... *) Hypothesis H_work_conserving : work_conserving arr_seq sched. (** ... and the schedule respects the scheduling policy. *) Hypothesis H_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job). (** ** Total Workload and Length of Busy Interval *) (** We introduce the abbreviation [rbf] for the task request bound function, which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *) Let rbf := task_request_bound_function. (** Next, we introduce [task_rbf] as an abbreviation for the task request bound function of task [tsk]. *) Let task_rbf := rbf tsk. (** Using the sum of individual request bound functions, we define the request bound function of all tasks (total request bound function). *) Let total_rbf := total_request_bound_function ts. (** We also define a bound for the priority inversion caused by jobs with lower priority. *) Let blocking_bound A := \max_(tsk_o <- ts | (blocking_relevant tsk_o) && (task_deadline tsk_o > task_deadline tsk + A)) (task_cost tsk_o - ε). (** Let L be any positive fixed point of the busy interval recurrence. *) Variable L : duration. Hypothesis H_L_positive : L > 0. Hypothesis H_fixed_point : L = total_rbf L. (** ** Response-Time Bound *) (** To reduce the time complexity of the analysis, recall the notion of search space. *) Let is_in_search_space := bounded_nps.is_in_search_space ts tsk L. (** Consider any value [R], and assume that for any given arrival offset [A] in the search space, there is a solution of the response-time bound recurrence which is bounded by [R]. *) Variable R: nat. Hypothesis H_R_is_maximum: forall A, is_in_search_space A -> exists F, A + F >= blocking_bound A + (task_rbf (A + ε) - (task_cost tsk - ε)) + bound_on_athep_workload ts tsk A (A + F) /\ R >= F + (task_cost tsk - ε). (** Now, we can leverage the results for the abstract model with bounded nonpreemptive segments to establish a response-time bound for the more concrete model of fully nonpreemptive scheduling. *) Let response_time_bounded_by := task_response_time_bound arr_seq sched.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
POS: 0 < task_cost tsk
response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_response_time_bound sched j R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_cost j = 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
ZEROj: job_cost j = 0
job_response_time_bound sched j R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j

job_cost j = 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
NEQ: valid_job_cost j

job_cost j = 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
NEQ: job_cost j <= task_cost (job_task j)

job_cost j = 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
NEQ: job_cost j <= task_cost tsk

job_cost j = 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
NEQ: job_cost j <= 0

job_cost j = 0
by apply/eqP; rewrite -leqn0.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
ZERO: task_cost tsk = 0
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
ZEROj: job_cost j = 0

job_response_time_bound sched j R
by rewrite /job_response_time_bound /completed_by ZEROj.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
Job: JobType
H1: JobTask Job Task
H2: JobArrival Job
H3: JobCost Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H4: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_nonpreemptive_sched: nonpreemptive_schedule sched
H_work_conserving: work_conserving arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
blocking_bound:= fun A : nat => \max_(tsk_o <- ts | blocking_relevant tsk_o && (task_deadline tsk + A < task_deadline tsk_o)) (task_cost tsk_o - 1): nat -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
is_in_search_space:= bounded_nps.is_in_search_space ts tsk L: duration -> bool
R: nat
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : nat, blocking_bound A + (task_rbf (A + 1) - (task_cost tsk - 1)) + bound_on_athep_workload ts tsk A (A + F) <= A + F /\ F + (task_cost tsk - 1) <= R
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
POS: 0 < task_cost tsk

response_time_bounded_by tsk R
by eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L := L). Qed. End RTAforFullyNonPreemptiveEDFModelwithArrivalCurves.