Built with
Alectryon , running Coq+SerAPI v8.20.0+0.20.0. Bubbles (
) indicate interactive fragments: hover for details, tap to reveal contents. Use
Ctrl+↑ Ctrl+↓ to navigate,
Ctrl+🖱️ to focus. On Mac, use
⌘ instead of
Ctrl .
Require Export prosa.model.readiness.basic.[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done ] [Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done ] [Loading ML file ring_plugin.cmxs (using legacy method) ... done ] Serlib plugin: coq-elpi.elpi is not available: serlib support is missing.
Incremental checking for commands in this plugin will be impacted. [Loading ML file coq-elpi.elpi ... done ] [Loading ML file zify_plugin.cmxs (using legacy method) ... done ] [Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done ] [Loading ML file micromega_plugin.cmxs (using legacy method) ... done ] [Loading ML file btauto_plugin.cmxs (using legacy method) ... done ] Notation "_ + _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ - _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ <= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ < _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ >= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ > _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ <= _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ < _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ <= _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ < _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ * _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Require Export prosa.results.edf.rta.bounded_nps.
Require Export prosa.analysis.facts.preemption.rtc_threshold.limited.
Require Export prosa.analysis.facts.readiness.basic.
Require Export prosa.model.task.preemption.limited_preemptive.
Require Export prosa.model.priority.edf.
Require Export prosa.analysis.definitions.blocking_bound.edf.
(** * RTA for EDF with Fixed Preemption Points *)
(** In this module we prove the RTA theorem for EDF-schedulers with
fixed preemption points. *)
(** ** Setup and Assumptions *)
Section RTAforFixedPreemptionPointsModelwithArrivalCurves .
(** Consider any type of tasks ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{TaskDeadline Task}.
(** ... and any type of jobs associated with these tasks. *)
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
(** We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready. *)
#[local] Existing Instance basic_ready_instance .
(** We assume that jobs are limited-preemptive. *)
#[local] Existing Instance limited_preemptive_job_model .
(** Consider any arrival sequence with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
(** Consider an arbitrary task set ts, ... *)
Variable ts : list Task.
(** ... assume that all jobs come from this task set, ... *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** ... and the cost of a job cannot be larger than the task cost. *)
Hypothesis H_valid_job_cost :
arrivals_have_valid_job_costs arr_seq.
(** Next, we assume we have the model with fixed preemption points.
I.e., each task is divided into a number of non-preemptive segments
by inserting statically predefined preemption points. *)
Context `{JobPreemptionPoints Job}.
Context `{TaskPreemptionPoints Task}.
Hypothesis H_valid_model_with_fixed_preemption_points :
valid_fixed_preemption_points_model arr_seq ts.
(** Let max_arrivals be a family of valid arrival curves, i.e., for
any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound of
[tsk], and (2) it is a monotonic function that equals 0 for the
empty interval delta = 0. *)
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** Let [tsk] be any task in ts that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** Next, consider any valid ideal uni-processor schedule with limited
preemptions of this arrival sequence ... *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_sched_valid : valid_schedule sched arr_seq.
Hypothesis H_schedule_with_limited_preemptions :
schedule_respects_preemption_model arr_seq sched.
(** Next, we assume that the schedule is a work-conserving schedule... *)
Hypothesis H_work_conserving : work_conserving arr_seq sched.
(** ... and the schedule respects the scheduling policy. *)
Hypothesis H_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job).
(** ** Total Workload and Length of Busy Interval *)
(** We introduce the abbreviation [rbf] for the task request bound function,
which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T. *)
Let rbf := task_request_bound_function.
(** Next, we introduce [task_rbf] as an abbreviation
for the task request bound function of task [tsk]. *)
Let task_rbf := rbf tsk.
(** Using the sum of individual request bound functions, we define the request bound
function of all tasks (total request bound function). *)
Let total_rbf := total_request_bound_function ts.
(** Let L be any positive fixed point of the busy interval recurrence. *)
Variable L : duration.
Hypothesis H_L_positive : L > 0 .
Hypothesis H_fixed_point : L = total_rbf L.
(** ** Response-Time Bound *)
(** To reduce the time complexity of the analysis, recall the notion of search space. *)
Let is_in_search_space := bounded_nps.is_in_search_space ts tsk L.
(** Consider any value [R], and assume that for any given arrival
offset [A] in the search space, there is a solution of the
response-time bound recurrence which is bounded by [R]. *)
Variable R : duration.
Hypothesis H_R_is_maximum :
forall (A : duration),
is_in_search_space A ->
exists (F : duration),
A + F >= blocking_bound ts tsk A
+ (task_rbf (A + ε) - (task_last_nonpr_segment tsk - ε))
+ bound_on_athep_workload ts tsk A (A + F) /\
R >= F + (task_last_nonpr_segment tsk - ε).
(** Now, we can leverage the results for the abstract model with bounded non-preemptive segments
to establish a response-time bound for the more concrete model of fixed preemption points. *)
Let response_time_bounded_by := task_response_time_bound arr_seq sched.
Theorem uniprocessor_response_time_bound_edf_with_fixed_preemption_points :
response_time_bounded_by tsk R.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop
response_time_bounded_by tsk R
Proof .Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop
response_time_bounded_by tsk R
move : (H_valid_model_with_fixed_preemption_points) => [MLP [BEG [END [INCR [HYP1 [HYP2 HYP3]]]]]].Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts
response_time_bounded_by tsk R
move : (MLP) => [BEGj [ENDj _]].Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq
response_time_bounded_by tsk R
case : (posnP (task_cost tsk)) => [ZERO|POSt].Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq ZERO : task_cost tsk = 0
response_time_bounded_by tsk R
{ Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq ZERO : task_cost tsk = 0
response_time_bounded_by tsk R
intros j ARR TSK.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq ZERO : task_cost tsk = 0 j : Job ARR : arrives_in arr_seq j TSK : job_of_task tsk j
job_response_time_bound sched j R
move : (H_valid_job_cost _ ARR) => POSt.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq ZERO : task_cost tsk = 0 j : Job ARR : arrives_in arr_seq j TSK : job_of_task tsk j POSt : valid_job_cost j
job_response_time_bound sched j R
move : TSK => /eqP TSK; move : POSt; rewrite /valid_job_cost TSK ZERO leqn0; move => /eqP Z.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq ZERO : task_cost tsk = 0 j : Job ARR : arrives_in arr_seq j TSK : job_task j = tsk Z : job_cost j = 0
job_response_time_bound sched j R
by rewrite /job_response_time_bound /completed_by Z.
} Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
response_time_bounded_by tsk R
eapply uniprocessor_response_time_bound_edf_with_bounded_nonpreemptive_segments with (L := L) => //.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
forall A : duration,
bounded_nps.is_in_search_space ts tsk L A ->
exists F : duration,
blocking_bound ts tsk A +
(task_request_bound_function tsk (A + 1 ) -
(task_cost tsk - task_rtct tsk)) +
bound_on_athep_workload ts tsk A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
rewrite subKn//.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
task_last_nonpr_segment tsk - 1 <= task_cost tsk
rewrite /task_last_nonpr_segment -(leq_add2r 1 ) subn1 !addn1 prednK; last first .Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
0 < last0 (distances (task_preemption_points tsk))
- Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
0 < last0 (distances (task_preemption_points tsk))
rewrite /last0 -nth_last.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
0 <
nth 0 (distances (task_preemption_points tsk))
(size (distances (task_preemption_points tsk))).-1
apply HYP3 => //.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
(size (distances (task_preemption_points tsk))).-1 <
size (distances (task_preemption_points tsk))
rewrite -(ltn_add2r 1 ) !addn1 prednK //.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
0 < size (distances (task_preemption_points tsk))
move : (number_of_preemption_points_in_task_at_least_two
_ _ H_valid_model_with_fixed_preemption_points _ H_tsk_in_ts POSt) => Fact2.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tskFact2 : 1 < size (task_preemption_points tsk)
0 < size (distances (task_preemption_points tsk))
move : (Fact2) => Fact3.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tskFact2, Fact3 : 1 < size (task_preemption_points tsk)
0 < size (distances (task_preemption_points tsk))
by rewrite size_of_seq_of_distances // addn1 ltnS // in Fact2.
- Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
last0 (distances (task_preemption_points tsk)) <=
(task_cost tsk).+1
apply leq_trans with (task_max_nonpreemptive_segment tsk).Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
last0 (distances (task_preemption_points tsk)) <=
task_max_nonpreemptive_segment tsk
+ Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
last0 (distances (task_preemption_points tsk)) <=
task_max_nonpreemptive_segment tsk
by apply last_of_seq_le_max_of_seq.
+ Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
task_max_nonpreemptive_segment tsk <=
(task_cost tsk).+1
rewrite -END// ltnW// ltnS//.Task : TaskType H : TaskCost Task H0 : TaskDeadline Task Job : JobType H1 : JobTask Job Task H2 : JobArrival Job H3 : JobCost Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq H4 : JobPreemptionPoints Job H5 : TaskPreemptionPoints Task H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model
arr_seq ts H6 : MaxArrivals Task H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts tsk : Task H_tsk_in_ts : tsk \in ts sched : schedule (ideal.processor_state Job) H_sched_valid : valid_schedule sched arr_seq H_schedule_with_limited_preemptions : schedule_respects_preemption_model
arr_seq sched H_work_conserving : work_conserving arr_seq sched H_respects_policy : respects_JLFP_policy_at_preemption_point
arr_seq sched
(EDF Job) rbf := task_request_bound_function : Task -> duration -> nat task_rbf := rbf tsk : duration -> nat total_rbf := total_request_bound_function ts : duration -> nat L : duration H_L_positive : 0 < LH_fixed_point : L = total_rbf L is_in_search_space := bounded_nps.is_in_search_space ts
tsk L : duration -> bool R : duration H_R_is_maximum : forall A : duration,
is_in_search_space A ->
exists F : duration,
blocking_bound ts tsk A +
(task_rbf (A + 1 ) -
(task_last_nonpr_segment tsk - 1 )) +
bound_on_athep_workload ts tsk A
(A + F) <=
A + F /\
F +
(task_last_nonpr_segment tsk - 1 ) <=
Rresponse_time_bounded_by := task_response_time_bound
arr_seq sched : Task -> duration -> Prop MLP : valid_limited_preemptions_job_model arr_seq BEG : task_beginning_of_execution_in_preemption_points
ts END : task_end_of_execution_in_preemption_points ts INCR : nondecreasing_task_preemption_points ts HYP1 : consistent_job_segment_count arr_seq HYP2 : job_respects_segment_lengths arr_seq HYP3 : task_segments_are_nonempty ts BEGj : beginning_of_execution_in_preemption_points
arr_seq ENDj : end_of_execution_in_preemption_points arr_seq POSt : 0 < task_cost tsk
task_max_nonpreemptive_segment tsk <=
last0 (task_preemption_points tsk)
exact : max_distance_in_seq_le_last_element_of_seq.
Qed .
End RTAforFixedPreemptionPointsModelwithArrivalCurves .