Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
New coercion path [GRing.subring_closedM; GRing.smulr_closedN] : GRing.subring_closed >-> GRing.oppr_closed is ambiguous with existing [GRing.subring_closedB; GRing.zmod_closedN] : GRing.subring_closed >-> GRing.oppr_closed. [ambiguous-paths,coercions,default]
New coercion path [GRing.subring_closed_semi; GRing.semiring_closedM] : GRing.subring_closed >-> GRing.mulr_closed is ambiguous with existing [GRing.subring_closedM; GRing.smulr_closedM] : GRing.subring_closed >-> GRing.mulr_closed. New coercion path [GRing.subring_closed_semi; GRing.semiring_closedD] : GRing.subring_closed >-> GRing.addr_closed is ambiguous with existing [GRing.subring_closedB; GRing.zmod_closedD] : GRing.subring_closed >-> GRing.addr_closed. [ambiguous-paths,coercions,default]
New coercion path [GRing.sdivr_closed_div; GRing.divr_closedM] : GRing.sdivr_closed >-> GRing.mulr_closed is ambiguous with existing [GRing.sdivr_closedM; GRing.smulr_closedM] : GRing.sdivr_closed >-> GRing.mulr_closed. [ambiguous-paths,coercions,default]
New coercion path [GRing.subalg_closedBM; GRing.subring_closedB] : GRing.subalg_closed >-> GRing.zmod_closed is ambiguous with existing [GRing.subalg_closedZ; GRing.submod_closedB] : GRing.subalg_closed >-> GRing.zmod_closed. [ambiguous-paths,coercions,default]
New coercion path [GRing.divring_closed_div; GRing.sdivr_closedM] : GRing.divring_closed >-> GRing.smulr_closed is ambiguous with existing [GRing.divring_closedBM; GRing.subring_closedM] : GRing.divring_closed >-> GRing.smulr_closed. [ambiguous-paths,coercions,default]
New coercion path [GRing.divalg_closedBdiv; GRing.divring_closedBM] : GRing.divalg_closed >-> GRing.subring_closed is ambiguous with existing [GRing.divalg_closedZ; GRing.subalg_closedBM] : GRing.divalg_closed >-> GRing.subring_closed. [ambiguous-paths,coercions,default]
Notation "_ - _" was already used in scope distn_scope. [notation-overridden,parsing,default]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.facts.priority.elf. Require Export prosa.analysis.facts.interference. Require Export prosa.analysis.facts.busy_interval.carry_in. Require Export prosa.analysis.facts.readiness.basic. Require Export prosa.analysis.facts.priority.jlfp_with_fp. Require Export prosa.analysis.facts.model.rbf. Require Export prosa.analysis.facts.busy_interval.pi. Require Export prosa.analysis.facts.busy_interval.pi_cond. Require Export prosa.analysis.abstract.ideal.abstract_seq_rta. Require Export prosa.analysis.facts.model.task_cost. (** * Response-Time Analysis for the ELF Scheduling Policy *) (** In the following, we derive a response-time analysis for ELF schedulers, assuming a workload of sporadic real-time tasks characterized by arbitrary arrival curves executing upon an ideal uniprocessor. To this end, we instantiate the _abstract Response-Time Analysis_ (aRTA) as provided in the [prosa.analysis.abstract] module. *) (** Note that this analysis is currently specific to workloads where each task has bounded nonpreemptive segments. This specificity will be further explained by the assumptions which depend on it. The analysis catering to the more general model with bounded priority inversion remains future work. *) Section AbstractRTAforELFwithArrivalCurves. (** ** A. Defining the System Model *) (** Before any formal claims can be stated, an initial setup is needed to define the system model under consideration. To this end, we next introduce and define the following notions using Prosa's standard definitions and behavioral semantics: - tasks, jobs, and their parameters, - the sequence of job arrivals, - worst-case execution time (WCET) and the absence of self-suspensions, - the set of tasks under analysis, - the task under analysis, and, finally, - an arbitrary schedule of the task set. *) (** *** Tasks and Jobs *) (** Consider any type of tasks, each characterized by a WCET [task_cost], a run-to-completion threshold [task_rtct], a maximum non-preemptive segment length [task_max_nonpreemptive_segment], an arrival curve [max_arrivals], and a relative priority point [task_priority_point] ... *) Context {Task : TaskType} `{TaskCost Task} `{TaskRunToCompletionThreshold Task} `{TaskMaxNonpreemptiveSegment Task} `{MaxArrivals Task} `{PriorityPoint Task}. (** ... and any type of jobs associated with these tasks, where each job has an arrival time [job_arrival], a cost [job_cost], and an arbitrary preemption model indicated by [job_preemptable]. *) Context {Job : JobType} `{JobTask Job Task} {Arrival : JobArrival Job} {Cost : JobCost Job} `{JobPreemptable Job}. (** *** The Job Arrival Sequence *) (** Consider any valid arrival sequence [arr_seq]. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** *** Absence of Self-Suspensions and WCET Compliance *) (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein [pending] jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** We further require that a job's cost cannot exceed its task's stated WCET. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** *** The Task Set *) (** We consider an arbitrary task set [ts]... *) Variable ts : list Task. Hypothesis H_task_set : uniq ts. (** ... and assume that all jobs stem from tasks in this task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Furthermore, we assume that [max_arrivals] is a family of valid arrival curves that constrains the arrival sequence [arr_seq], i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and ... *) Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** ... (2) a monotonic function that equals [0] for the empty interval [delta = 0]. *) Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** *** The Task Under Analysis *) (** Let [tsk] be any task in [ts] that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** We assume that [tsk] is described by a valid task _run-to-completion threshold_. That is, there exists a task parameter [task_rtct] such that [task_rtct tsk] is - (1) no larger than [tsk]'s WCET, and - (2) for any job of task [tsk], the job's run-to-completion threshold [job_rtct] is bounded by [task_rtct tsk]. *) Hypothesis H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold arr_seq tsk. (** *** The Schedule *) (** Finally, we consider any arbitrary, valid ideal uni-processor schedule of the given arrival sequence [arr_seq]. *) Variable sched : schedule (ideal.processor_state Job). Hypothesis H_sched_valid : valid_schedule sched arr_seq. (** Now, we assume that the fixed-priority policy [FP] that parameterizes the ELF policy is... *) Variable FP : FP_policy Task. (** ... reflexive, transitive, and total. *) Hypothesis H_reflexive_priorities : reflexive_task_priorities FP. Hypothesis H_transitive_priorities : transitive_task_priorities FP. Hypothesis H_total_priorities : total_task_priorities FP. (** We further assume that the schedule complies with the preemption model ... *) Hypothesis H_valid_preemption_model : valid_preemption_model arr_seq sched. (** ... and finally, that it respects the [ELF] scheduling policy. *) Hypothesis H_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP). (** ** B. Interference and Interfering Workload *) (** With the system model in place, the next step is to encode the scheduling policy and preemption model such that aRTA becomes applicable. To this end, we encode the semantics of the scheduling policy and preemption model by instantiating two functions, called [interference] and [interfering_workload]. We can simply reuse the existing general definitions of _interference_ and _interfering workload_ that apply to job-level fixed-priority (JLFP) policy (as provided in the module [analysis.abstract.ideal.iw_instantiation]).*) #[local] Instance ideal_elf_interference : Interference Job := ideal_jlfp_interference arr_seq sched. #[local] Instance ideal_elf_interfering_workload : InterferingWorkload Job := ideal_jlfp_interfering_workload arr_seq sched. (** ** C. Classic and Abstract Work Conservation *) (** We assume that the schedule is work-conserving in the classic sense. *) Hypothesis H_work_conserving : work_conserving.work_conserving arr_seq sched. (** This allows us to apply [instantiated_i_and_w_are_coherent_with_schedule] to conclude that abstract work-conservation also holds. *) (** ** D. The Priority Inversion Bound and its Validity *) (** In this file, we break the priority inversion experienced by any job into two categories : - (1) priority inversion caused by jobs belonging to tasks with lower priority than [tsk] - (2) priority inversion caused by jobs belonging to tasks with equal priority as [tsk] Note that, by definition of the ELF policy, no job from a task with higher priority than [tsk] can cause priority inversion. *) (** We define a predicate to identify jobs from lower-priority tasks, or tasks for which [tsk] has higher priority. *) Let is_lower_priority j' := hp_task tsk (job_task j'). (** We assume there exists a bound on the maximum length of priority inversion from these jobs that is incurred by any job of task [tsk]. *) Variable priority_inversion_lp_tasks_bound : duration. Hypothesis H_priority_inversion_from_lp_tasks_is_bounded : priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound). (** Similarly, we define a predicate to select jobs whose tasks have equal priority as [tsk]... *) Let is_equal_priority j' := ep_task tsk (job_task j'). (** ... and assume that there exists a bound on the maximum length of priority inversion caused by them to any job of [tsk]. *) Variable priority_inversion_ep_tasks_bound : duration -> duration. Hypothesis H_priority_inversion_from_ep_tasks_is_bounded : priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound. (** We then define the priority inversion bound as a maximum of the bounds on the two categories. *) (** Note that this definition is only applicable when all tasks have bounded nonpreemptive segments. *) Definition priority_inversion_bound (A: duration) := maxn priority_inversion_lp_tasks_bound (priority_inversion_ep_tasks_bound A). (** Now, we define the following predicate to identify tasks that can release jobs. *) Let blocking_relevant (tsk_o : Task) := (max_arrivals tsk_o ε > 0) && (task_cost tsk_o > 0). (** We also define a predicate to identify equal priority tasks that cannot cause priority inversion for a job [j], given that [j]'s busy interval starts that instant [t1]. *) Let is_ep_causing_intf (j: Job) (t1 : instant) (tsk_other:Task) := ((job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other >=0)%R . (** Using the above, we define the condition that an equal-priority task must satisfy for any of its jobs to cause blocking (or priority inversion) to a job [j] in [j]'s busy interval starting at [t1]. *) Let ep_task_blocking_relevant tsk_other j t1 := ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other. (** Finally, we assume that the [priority_inversion_ep_tasks_bound] is bounded by the maximum [task_cost] of tasks which satisfy the above condition. Note that this assumption is valid only for the model where tasks have bounded nonpreemptive segments. *) Hypothesis H_priority_inversion_from_ep_tasks_concrete_bound : forall j t1, job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i. (** Having defined bounds on two separate categories of priority inversion, we now show that the defined [priority_inversion_bound] upper-bounds the priority inversion faced by any job belonging to [tsk], regardless of its cause. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i

priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i

priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
jlp_at_t1: jlp \in scheduled_jobs_at arr_seq sched t1
nHEPj: ~~ hep_job jlp j

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
lp: ~~ hep_task (job_task jlp) (job_task j)

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
ep: ep_task (job_task jlp) (job_task j)
cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
lp: ~~ hep_task (job_task jlp) (job_task j)

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
lp: ~~ hep_task (job_task jlp) (job_task j)

cumulative_priority_inversion_cond arr_seq sched j is_lower_priority t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
lp: ~~ hep_task (job_task jlp) (job_task j)

cumulative_priority_inversion_cond arr_seq sched j is_lower_priority t1 t2 <= priority_inversion_lp_tasks_bound
by apply: H_priority_inversion_from_lp_tasks_is_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
ep: ep_task (job_task jlp) (job_task j)

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
ep: ep_task (job_task jlp) (job_task j)

cumulative_priority_inversion arr_seq sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
ep: ep_task (job_task jlp) (job_task j)

cumulative_priority_inversion_cond arr_seq sched j is_equal_priority t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: instant
BUSY_PREF: classical.busy_interval_prefix arr_seq sched j t1 t2
jlp: Job
nHEPj: ~~ hep_job jlp j
jlp_at_t1: scheduled_at sched jlp t1
ep: ep_task (job_task jlp) (job_task j)

cumulative_priority_inversion_cond arr_seq sched j is_equal_priority t1 t2 <= priority_inversion_ep_tasks_bound (job_arrival j - t1)
by apply: H_priority_inversion_from_ep_tasks_is_bounded. } Qed. (** ** E. Maximum Busy-Window Length *) (** The next step is to establish a bound on the maximum busy-window length, which aRTA requires to be given. *) (** Using the sum of individual request bound functions, we define the request bound function of all tasks with higher-or-equal priority [FP] (with respect to [tsk]). *) Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk. (** To this end, we assume that we are given a positive value [L] ...*) Variable L : duration. Hypothesis H_L_positive : L > 0. (** ... that is a fixed point of the following equation. *) Hypothesis H_fixed_point : L = priority_inversion_lp_tasks_bound + total_hep_rbf L. (** Given this definition of [L], we prove that [L] bounds the length of the busy window. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk

priority_inversion_of_job_is_bounded_by arr_seq sched j ?priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
forall t : nat, ?priority_inversion_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2
exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk

priority_inversion_of_job_is_bounded_by arr_seq sched j ?priority_inversion_bound
by apply: priority_inversion_is_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk

forall t : nat, priority_inversion_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2
exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk

forall t : nat, priority_inversion_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= priority_inversion_lp_tasks_bound + total_hep_rbf L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_lp_tasks_bound + priority_inversion_ep_tasks_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= priority_inversion_lp_tasks_bound + total_hep_rbf L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_ep_tasks_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= total_hep_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_ep_tasks_bound (job_arrival j - t) + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= total_hp_request_bound_function_FP ts tsk L + (\sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L + \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_ep_tasks_bound (job_arrival j - t) + workload_of_jobs (hep_from_hp_task j) (arrivals_between arr_seq t (t + L)) + workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L + total_hp_request_bound_function_FP ts tsk L + \sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_ep_tasks_bound (job_arrival j - t) <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
workload_of_jobs (hep_from_hp_task j) (arrivals_between arr_seq t (t + L)) <= total_hp_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

priority_inversion_ep_tasks_bound (job_arrival j - t) <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\max_(i <- ts | ep_task_blocking_relevant i j t) task_cost i <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- ts | ep_task_blocking_relevant i j t) task_cost i <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- ts | ep_task_blocking_relevant i j t) task_request_bound_function i L <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
\sum_(i <- ts | ep_task_blocking_relevant i j t) task_cost i <= \sum_(i <- ts | ep_task_blocking_relevant i j t) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- ts | ep_task_blocking_relevant i j t) task_request_bound_function i L <= \sum_(i <- ts | ep_task i tsk && ~~ is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

forall i : Task, ep_task_blocking_relevant i j t -> ep_task i tsk && ~~ is_ep_causing_intf j t i
by move => tsk' /andP[].
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- ts | ep_task_blocking_relevant i j t) task_cost i <= \sum_(i <- ts | ep_task_blocking_relevant i j t) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- ts | (i \in ts) && ep_task_blocking_relevant i j t) task_cost i <= \sum_(i <- ts | (i \in ts) && ep_task_blocking_relevant i j t) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
tsk_other: Task
_a_: tsk_other \in ts
MA: 0 < max_arrivals tsk_other 1

task_cost tsk_other <= task_request_bound_function tsk_other L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
tsk_other: Task
_a_: tsk_other \in ts
MA: 0 < max_arrivals tsk_other 1

task_cost tsk_other <= task_request_bound_function tsk_other 1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
tsk_other: Task
_a_: tsk_other \in ts
MA: 0 < max_arrivals tsk_other 1
task_request_bound_function tsk_other 1 <= task_request_bound_function tsk_other L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
tsk_other: Task
_a_: tsk_other \in ts
MA: 0 < max_arrivals tsk_other 1

task_cost tsk_other <= task_request_bound_function tsk_other 1
by apply: leq_pmulr.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
tsk_other: Task
_a_: tsk_other \in ts
MA: 0 < max_arrivals tsk_other 1

task_request_bound_function tsk_other 1 <= task_request_bound_function tsk_other L
by apply/leq_mul/(H_valid_arrival_curve _ _).2.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (hep_from_hp_task j) (arrivals_between arr_seq t (t + L)) <= total_hp_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (hep_from_hp_task j) (arrivals_between arr_seq t (t + L)) <= total_hp_request_bound_function_FP ts tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (from_hp_task j) (arrivals_between arr_seq t (t + L)) <= total_hp_request_bound_function_FP ts tsk L
rewrite /from_hp_task TSK'; exact: sum_of_jobs_le_sum_rbf.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(i <- ts | ep_task i tsk && is_ep_causing_intf j t i) task_request_bound_function i L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

workload_of_jobs (hep_from_ep_task j) (arrivals_between arr_seq t (t + L)) <= \sum_(j' <- arrivals_between arr_seq t (t + L) | (fun tsk' : Task => ep_task tsk' tsk && is_ep_causing_intf j t tsk') (job_task j')) job_cost j'
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

\sum_(i <- arrivals_between arr_seq t (t + L) | (i \in arrivals_between arr_seq t (t + L)) && hep_from_ep_task j i) job_cost i <= \sum_(i <- arrivals_between arr_seq t (t + L) | [&& i \in arrivals_between arr_seq t (t + L), ep_task (job_task i) tsk & is_ep_causing_intf j t (job_task i)]) job_cost i
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat

forall i : Job, (i \in arrivals_between arr_seq t (t + L)) && hep_from_ep_task j i -> [&& i \in arrivals_between arr_seq t (t + L), ep_task (job_task i) tsk & is_ep_causing_intf j t (job_task i)]
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true

hep_from_ep_task j j0 -> ep_task (job_task j0) tsk && is_ep_causing_intf j t (job_task j0)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true
HEPj: hep_job j0 j
EP: ep_task (job_task j0) (job_task j)

is_ep_causing_intf j t (job_task j0)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true
EP: ep_task (job_task j0) (job_task j)

hep_job j0 j -> is_ep_causing_intf j t (job_task j0)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true
EP: ep_task (job_task j0) (job_task j)

hep_job j0 j -> is_ep_causing_intf j t (job_task j0)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true
EP: ep_task (job_task j0) (job_task j)

hep_job j0 j -> (t%:R + task_priority_point (job_task j0) <= (job_arrival j)%:R + task_priority_point (job_task j))%R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t: nat
j0: Job
eq: (j0 \in arrivals_between arr_seq t (t + L)) = true
EP: ep_task (job_task j0) (job_task j)

t <= job_arrival j0
apply: job_arrival_between_ge=>//. }
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
TSK': job_task j = tsk
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

busy_interval sched j t1 t2
eapply instantiated_busy_interval_equivalent_busy_interval => //. } Qed. (** ** F. The Interference-Bound Function *) (** Next, we define the interference [task_IBF] and prove that [task_IBF] bounds the interference incurred by any job of [tsk]. Note that [task_IBF] only takes the interference from jobs of other tasks into account i.e., self-interference is not included. *) (** We first consider the interference incurred due to strictly higher-priority tasks i.e., those which have strictly higher-priority according to the FP policy. *) Definition total_hp_rbf := total_hp_request_bound_function_FP ts tsk. (** We define the following parameterized end point of the interval during which interfering jobs of equal-priority tasks must arrive. The implicit beginning of the interval is the start of the busy window, i.e., at time [t1]. *) Definition ep_task_intf_interval (tsk_o : Task) (A : instant) := ((A + ε)%:R + task_priority_point tsk - task_priority_point tsk_o)%R. (** Using this interval end point, we define the bound on the total equal-priority ([EP]) workload produced during the interval [Δ] as the sum of the RBFs of all tasks (with equal priority as [tsk]) in the task set [ts] (excluding [tsk]) over the minimum of [Δ] and [ep_task_intf_interval]. *) Definition bound_on_total_ep_workload (A Δ : duration) := \sum_(tsk_o <- ts | ep_task tsk tsk_o && (tsk_o != tsk)) task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o A)| Δ). (** Finally, [task_IBF] for an interval [Δ] is defined as the sum of [priority_inversion_bound], [bound_on_total_ep_workload], and [total_hp_rbf] on [Δ]. *) Definition task_IBF (A Δ : duration) := priority_inversion_bound A + bound_on_total_ep_workload A Δ + total_hp_rbf Δ. (** In this section, we prove the soundness of [task_IBF].*) Section BoundingIBF. (** Consider any job [j] of task [tsk] that has a positive job cost and is in the arrival sequence. *) Variable j : Job. Hypothesis H_job_of_task : job_of_task tsk j. Hypothesis H_job_cost_positive : job_cost_positive j. Hypothesis H_j_in_arr_seq : arrives_in arr_seq j. (** Assume the busy interval of [j] (in the abstract sense) is given by <<[t1,t2)>>. *) Variable t1 t2 : instant. Hypothesis H_busy_window : definitions.busy_interval sched j t1 t2. (** Consider any arbitrary length [Δ] interval <<[t1, t1+ Δ)>> within the busy window. *) Variable Δ : duration. Hypothesis H_Δ_in_busy : t1 + Δ <= t2. (** We define the service needed by jobs belongings to other equal-priority tasks, that have higher-or-equal priority than [j]... *) Definition service_of_hp_jobs_from_other_ep_tasks (j : Job) (t1 t2 : instant) := service_of_jobs sched (fun jhp => other_ep_task_hep_job jhp j) (arrivals_between arr_seq t1 t2) t1 t2. (** ...and show that it is equivalent to the cumulative interference incurred by [j] due to these jobs. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) = service_of_hp_jobs_from_other_ep_tasks j t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) = service_of_hp_jobs_from_other_ep_tasks j t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

\sum_(t1 <= t < t1 + Δ) has (other_ep_task_hep_job^~ j) (served_jobs_at arr_seq sched t) = service_of_jobs sched (other_ep_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

classical.quiet_time arr_seq sched ?j t1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
forall j' : Job, other_ep_task_hep_job j' j -> hep_job j' ?j
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

classical.quiet_time arr_seq sched ?j t1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

quiet_time sched j t1
by apply H_busy_window.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

forall j' : Job, other_ep_task_hep_job j' j -> hep_job j' j
by move => j' /andP[/andP[HEP _] _]. Qed. (** Similarly, we define the service required by jobs belonging to other strictly higher-priority tasks, that have higher-or-equal priority than [j], ... *) Definition service_of_hp_jobs_from_other_hp_tasks (j : Job) (t1 t2 : instant) := service_of_jobs sched (fun jhp => hp_task_hep_job jhp j) (arrivals_between arr_seq t1 t2) t1 t2. (** ... and show that it is equivalent to the cumulative interference incurred by [j] due to these jobs. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) = service_of_hp_jobs_from_other_hp_tasks j t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) = service_of_hp_jobs_from_other_hp_tasks j t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

\sum_(t1 <= t < t1 + Δ) has (hp_task_hep_job^~ j) (served_jobs_at arr_seq sched t) = service_of_jobs sched (hp_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

classical.quiet_time arr_seq sched ?j t1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
forall j' : Job, hp_task_hep_job j' j -> hep_job j' ?j
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

classical.quiet_time arr_seq sched ?j t1
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

quiet_time sched j t1
by apply H_busy_window.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2

forall j' : Job, hp_task_hep_job j' j -> hep_job j' j
by move => j' /andP[HEP HP]. Qed. (** Assume the arrival time of [j] relative to the busy window start is given by [A]. *) Let A := job_arrival j - t1. (** First, consider the case where [ep_task_intf_interval ≤ Δ]. *) Section ShortenRange. (** Consider any equal-priority task [tsk_o] distinct from [tsk]. Assume that [tsk_o] is in [ts]. *) Variable tsk_o : Task. Hypothesis H_tsko_in_ts : tsk_o \in ts. Hypothesis H_neq : tsk_o != tsk. Hypothesis H_task_priority : ep_task tsk tsk_o. (** We define a predicate to identify higher-or-equal-priority jobs coming from the task [tsk]. *) Let hep_jobs_from (tsk : Task) := fun (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk). (** If [Δ] is greater than [ep_task_intf_interval] for [tsk_o] and [A], ... *) Hypothesis H_Δ_ge : (ep_task_intf_interval tsk_o A <= Δ%:R)%R. (** ... then the workload of jobs satisfying the predicate [hp_jobs_from] in the interval <<[t1,t1 + Δ)>> is bounded by the workload in the interval <<[t1, t1 + ep_task_intf_interval [tsk_o] [A])>>. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R

workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R

workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ

workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs [eta hep_jobs_from tsk_o] (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ

workload_of_jobs (fun x : Job => (hp_task (job_task x) (job_task j) || hep_task (job_task x) (job_task j) && hep_job x j) && ep_task (job_task x) (job_task j) && (job_task x == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (fun x : Job => (hp_task (job_task x) (job_task j) || hep_task (job_task x) (job_task j) && hep_job x j) && ep_task (job_task x) (job_task j) && (job_task x == tsk_o)) (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= job_arrival j'

~~ ((hp_task (job_task j') (job_task j) || hep_task (job_task j') (job_task j) && hep_job j' j) && ep_task (job_task j') (job_task j) && (job_task j' == tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= job_arrival j'
HEP: hep_job j' j
TSKo: job_task j' = tsk_o

false
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
HEP: hep_job j' j
TSKo: job_task j' = tsk_o

`|Num.max 0%R (t1%:R + ((A + 1)%:R + task_priority_point tsk - task_priority_point (job_task j')))%R| <= job_arrival j' -> false
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
HEP: hep_job j' j
TSKo: job_task j' = tsk_o

`|Num.max 0%R (t1%:R + ((A + 1)%:R + task_priority_point (job_task j) - task_priority_point (job_task j')))%R| <= job_arrival j' -> false
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_task_priority: ep_task tsk tsk_o
hep_jobs_from:= fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk): Task -> Job -> bool
H_Δ_ge: (ep_task_intf_interval tsk_o A <= Δ%:R)%R
BOUNDED: `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R| <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
TSKo: job_task j' = tsk_o

((job_arrival j')%:R + task_priority_point (job_task j') <= (job_arrival j)%:R + task_priority_point (job_task j))%R -> `|Num.max 0%R (t1%:R + ((A + 1)%:R + task_priority_point (job_task j) - task_priority_point (job_task j')))%R| <= job_arrival j' -> false
by clear; lia. Qed. End ShortenRange. (** Then, we establish that the cumulative interference incurred by [j] due to all higher-or-equal-priority jobs from equal-priority tasks is bounded by the [bound_on_ep_workload], ... *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | other_ep_task_hep_job j0 j) service_during sched j0 t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk

workload_of_jobs (other_ep_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) (arrivals_between arr_seq t1 (t1 + Δ)) <= \sum_(tsk_o <- ts | ep_task tsk tsk_o && (tsk_o != tsk)) task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk

\sum_(tsk_o <- ts | other_ep_task tsk tsk_o) workload_of_jobs (fun j0 : Job => hep_job_of_ep_other_task j j0 && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= \sum_(tsk_o <- ts | ep_task tsk tsk_o && (tsk_o != tsk)) task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk

workload_of_jobs (fun j0 : Job => hep_job_of_ep_other_task j j0 && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk

workload_of_jobs (fun j0 : Job => hep_job_of_ep_other_task j j0 && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= ?Goal
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
?Goal <= task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk

workload_of_jobs (fun j0 : Job => hep_job_of_ep_other_task j j0 && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= ?Goal
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
i: Job
_a_: hep_job i j && ep_task (job_task i) (job_task j)
_b_: job_task i != job_task j
_b1_: job_task i == tsk_o

hep_job i j && ep_task (job_task i) (job_task j) && (job_task i == tsk_o)
by apply/andP; split.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (job_arrival j - t1))| Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
LEQ: Δ <= `|Num.max 0%R (ep_task_intf_interval tsk_o A)|

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
LEQ: Δ <= `|Num.max 0%R (ep_task_intf_interval tsk_o A)|

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
LEQ: Δ <= `|Num.max 0%R (ep_task_intf_interval tsk_o A)|

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (job_of_task tsk_o) (arrivals_between arr_seq ?t (?t + Δ))
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
LEQ: Δ <= `|Num.max 0%R (ep_task_intf_interval tsk_o A)|

forall j0 : Job, hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o) -> job_task j0 == tsk_o
by move => j'/ andP[_ EXACT].
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

workload_of_jobs (fun j0 : Job => hep_job j0 j && ep_task (job_task j0) (job_task j) && (job_task j0 == tsk_o)) (arrivals_between arr_seq t1 (t1 + Δ)) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

workload_of_jobs [eta (fun (tsk : Task) (jo : Job) => hep_job jo j && ep_task (job_task jo) (job_task j) && (job_task jo == tsk)) tsk_o] (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

workload_of_jobs (fun jo : Job => hep_job jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
{in arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|, (fun x : Job => hep_job x j && ep_task (job_task x) (job_task j) && (job_task x == tsk_o)) =1 (fun jo : Job => hep_job jo j && (job_task jo == tsk_o))}
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

workload_of_jobs (fun jo : Job => hep_job jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
EQ: (0 <= ep_task_intf_interval tsk_o A)%R = true

workload_of_jobs (fun jo : Job => hep_job jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
EQ: (0 <= ep_task_intf_interval tsk_o A)%R = true

workload_of_jobs (fun jo : Job => hep_job jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 (t1 + `|Num.max 0%R (ep_task_intf_interval tsk_o A)|)) <= task_request_bound_function tsk_o `|Num.max 0%R (ep_task_intf_interval tsk_o A)|
by apply: (workload_le_rbf' arr_seq tsk_o _ _ t1 _ (fun jo => hep_job jo j)).
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

{in arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|, (fun x : Job => hep_job x j && ep_task (job_task x) (job_task j) && (job_task x == tsk_o)) =1 (fun jo : Job => hep_job jo j && (job_task jo == tsk_o))}
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ

{in arrivals_between arr_seq t1 `|Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|, (fun x : Job => hep_job x j && ep_task (job_task x) (job_task j) && (job_task x == tsk_o)) =1 (fun jo : Job => hep_job jo j && (job_task jo == tsk_o))}
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
j': Job
IN1: j' \in arrivals_between arr_seq t1 `| Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|

hep_job j' j && ep_task (job_task j') (job_task j) && (job_task j' == tsk_o) = hep_job j' j && (job_task j' == tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
j': Job
IN1: j' \in arrivals_between arr_seq t1 `| Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|
TSK': job_task j' = tsk_o

hep_job j' j && ep_task (job_task j') (job_task j) && true = hep_job j' j && true
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
j': Job
IN1: j' \in arrivals_between arr_seq t1 `| Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|
hep_job j' j && ep_task (job_task j') (job_task j) && false = hep_job j' j && false
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
j': Job
IN1: j' \in arrivals_between arr_seq t1 `| Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|
TSK': job_task j' = tsk_o

hep_job j' j && ep_task (job_task j') (job_task j) && true = hep_job j' j && true
by rewrite !andbT TSK TSK' ep_task_sym EP andbT.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
TSK: job_task j = tsk
tsk_o: Task
IN: tsk_o \in ts
EP: ep_task tsk tsk_o
OTHER: tsk_o != tsk
GT: `|Num.max 0%R (ep_task_intf_interval tsk_o A)| <= Δ
j': Job
IN1: j' \in arrivals_between arr_seq t1 `| Num.max 0%R (t1%:R + ep_task_intf_interval tsk_o A)%R|

hep_job j' j && ep_task (job_task j') (job_task j) && false = hep_job j' j && false
by rewrite !andbF. }}} Qed. (** ... and that the cumulative interference incurred by [j] due to all higher-or-equal priority jobs from higher-priority tasks is bounded by the [total_hp_rbf]]. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) <= total_hp_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) <= total_hp_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

service_of_hp_jobs_from_other_hp_tasks j t1 (t1 + Δ) <= total_hp_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

workload_of_jobs (hp_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_hp_request_bound_function_FP ts tsk Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hp_task_hep_job j0 j) job_cost j0 <= \sum_(tsk_other <- ts | hp_task tsk_other tsk) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat

hp_task_hep_job^~ j =1 (fun j0 : Job => hp_task (job_task j0) tsk)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
j': Job

hep_job j' j && hp_task (job_task j') (job_task j) = hp_task (job_task j') tsk
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
j': Job

hp_task (job_task j') (job_task j) = hp_task (job_task j') tsk
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
j': Job
_Hyp_: hp_task (job_task j') (job_task j)
hep_job j' j
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
j': Job

hp_task (job_task j') (job_task j) = hp_task (job_task j') tsk
by move: H_job_of_task => /eqP ->.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
j: Job
H_job_of_task: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
H_j_in_arr_seq: arrives_in arr_seq j
t1, t2: instant
H_busy_window: busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ <= t2
A:= job_arrival j - t1: nat
j': Job
_Hyp_: hp_task (job_task j') (job_task j)

hep_job j' j
by apply/orP; left. Qed. End BoundingIBF. (** Finally, we use the above two lemmas to prove that [task_IBF] bounds the interference incurred by [tsk]. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L

task_interference_is_bounded_by arr_seq sched tsk task_IBF
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L

task_interference_is_bounded_by arr_seq sched tsk task_IBF
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF A Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
ZERO: job_cost j = 0

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j
cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
ZERO: job_cost j = 0

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
ZERO: job_cost j = 0

completed_by sched j (t1 + Δ)
by rewrite /completed_by /completed_by ZERO.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumul_task_interference arr_seq sched j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= task_IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= priority_inversion_bound (job_arrival j - t1) + (bound_on_total_ep_workload (job_arrival j - t1) Δ + total_hp_rbf Δ)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ + total_hp_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) + cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ + total_hp_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j
cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) <= total_hp_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_interference_from_hep_jobs_from_other_ep_tasks arr_seq sched j t1 (t1 + Δ) <= bound_on_total_ep_workload (job_arrival j - t1) Δ
by apply: bound_on_ep_workload.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
OFF: relative_arrival_time_of_job_is_A sched j (job_arrival j - t1)
POS: 0 < job_cost j

cumulative_interference_from_hep_jobs_from_hp_tasks arr_seq sched j t1 (t1 + Δ) <= total_hp_rbf Δ
by apply: bound_on_hp_workload. Qed. (** ** G. Defining the Search Space *) (** In this section, we define the concrete search space for [ELF]. Then, we prove that, if a given [A] is in the abstract search space, then it is also included in the concrete search space. *) (** For [tsk], the total interference bound is defined as the sum of the interference due to - (1) jobs belonging to the same task (self interference) and - (2) jobs belonging to other tasks [task_IBF]. *) Let total_interference_bound (A Δ : duration) := task_request_bound_function tsk (A + ε) - task_cost tsk + task_IBF A Δ. (** In the case of ELF, of the four terms that constitute the total interference bound, only the [priority_inversion_bound], task RBF and the bound on total equal-priority workload are dependent on the offset [A]. *) (** Therefore, in order to define the concrete search space, we define predicates that capture when these values change for successive values of the offset [A]. *) Definition task_rbf_changes_at (A : duration) := task_request_bound_function tsk A != task_request_bound_function tsk (A + ε). Definition bound_on_total_ep_workload_changes_at A := has (fun tsk_o => ep_task tsk tsk_o && (tsk_o != tsk) && (ep_task_intf_interval tsk_o (A - ε) != ep_task_intf_interval tsk_o A)) ts. Definition priority_inversion_changes_at (A : duration) := priority_inversion_bound (A - ε) != priority_inversion_bound A. (** Finally, we define the concrete search space as the set containing all points less than [L] at which any of the bounds on priority inversion, task RBF, or total equal-priority workload changes. *) Definition is_in_search_space (A : duration) := (A < L) && (priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_ep_workload_changes_at A). (** In this section, we prove that, for any job [j] of task [tsk], if [A] is in the abstract search space, then it is also in the concrete search space. *) Section ConcreteSearchSpace. (** To rule out pathological cases with the concrete search space, we assume that the task cost is positive and the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** Any point [A] in the abstract search space... *) Variable A : duration. Hypothesis H_A_is_in_abstract_search_space : search_space.is_in_search_space L total_interference_bound A. (** ... is also in the concrete search space. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_ep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x
priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_ep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_ep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

task_rbf_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

0 < task_request_bound_function tsk 1
by apply task_rbf_epsilon_gt_0 => //.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x

priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_ep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

false
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

total_interference_bound (A - 1) x = total_interference_bound A x
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF (A - 1) x = task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A x
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

bound_on_total_ep_workload (A - 1) x == bound_on_total_ep_workload A x
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

\sum_(tsk_o <- ts | ep_task tsk tsk_o && (tsk_o != tsk)) task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o (A - 1))| x) == \sum_(tsk_o <- ts | ep_task tsk tsk_o && (tsk_o != tsk)) task_request_bound_function tsk_o (minn `|Num.max 0%R (ep_task_intf_interval tsk_o A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A

\sum_(i <- ts | [&& i \in ts, ep_task tsk i & i != tsk]) task_request_bound_function i (minn `|Num.max 0%R (ep_task_intf_interval i (A - 1))| x) = \sum_(i <- ts | [&& i \in ts, ep_task tsk i & i != tsk]) task_request_bound_function i (minn `|Num.max 0%R (ep_task_intf_interval i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
WL: ~~ bound_on_total_ep_workload_changes_at A
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: {in ts, forall x : Task, ~~ (ep_task tsk x && (x != tsk) && (ep_task_intf_interval x (A - 1) != ep_task_intf_interval x A))}

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
EQ: ep_task tsk tsk_i && (tsk_i != tsk) = false

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A
task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `| Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
EQ: ep_task tsk tsk_i && (tsk_i != tsk) = false

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
by move: OTHER; rewrite EQ.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i A)| x)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A
leq_x: `|Num.max 0%R (ep_task_intf_interval tsk_i A)| <= x

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i `|Num.max 0%R (ep_task_intf_interval tsk_i A)|
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A
gtn_x: x < `|Num.max 0%R (ep_task_intf_interval tsk_i A)|
task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A
leq_x: `|Num.max 0%R (ep_task_intf_interval tsk_i A)| <= x

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i `|Num.max 0%R (ep_task_intf_interval tsk_i A)|
by rewrite WL (minn_idPl leq_x).
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
PI: priority_inversion_bound (A - 1) = priority_inversion_bound A
RBF: task_request_bound_function tsk A = task_request_bound_function tsk (A + 1)
tsk_i: Task
TS: tsk_i \in ts
OTHER: ep_task tsk tsk_i && (tsk_i != tsk)
WL: ep_task_intf_interval tsk_i (A - 1) = ep_task_intf_interval tsk_i A
gtn_x: x < `|Num.max 0%R (ep_task_intf_interval tsk_i A)|

task_request_bound_function tsk_i (minn `|Num.max 0%R (ep_task_intf_interval tsk_i (A - 1))| x) = task_request_bound_function tsk_i x
by rewrite WL (minn_idPr (ltnW gtn_x)). Qed. End ConcreteSearchSpace. (** ** H. The Response-Time Bound [R] *) (** Finally, we define the response-time bound [R] as the maximum offset by which any job [j] of task [tsk] has completed. *) Variable R : duration. Hypothesis H_R_is_maximum : forall (A : duration), is_in_search_space A -> exists (F : duration), A + F >= priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk)) /\ R >= F + (task_cost tsk - task_rtct tsk). Section ResponseTimeReccurence. (** To rule out pathological cases with the [H_R_is_maximum] equation (such as [task_cost tsk] being greater than [task_rbf (A + ε)]), we assume that the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** We have established that if [A] is in the abstract search then it is in the concrete search space, too. We also know by assumption that, if [A] is in the concrete search space, then there exists an [R] that satisfies [H_R_is_maximum]. *) (** Using these facts, here we prove that if, [A] is in the abstract search space, ... *) Let is_in_search_space := search_space.is_in_search_space L total_interference_bound. (** ... then there exists a solution to the response-time equation as stated in the aRTA. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, AbstractRTAforELFwithArrivalCurves.is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= search_space.is_in_search_space L total_interference_bound: nat -> Prop

forall A : nat, is_in_search_space A -> exists F : nat, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, AbstractRTAforELFwithArrivalCurves.is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= search_space.is_in_search_space L total_interference_bound: nat -> Prop

forall A : nat, is_in_search_space A -> exists F : nat, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, AbstractRTAforELFwithArrivalCurves.is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
A0: nat
IN: is_in_search_space A0

exists F : nat, task_request_bound_function tsk (A0 + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A0 (A0 + F) <= A0 + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, AbstractRTAforELFwithArrivalCurves.is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
A0: nat
IN: is_in_search_space A0
F: duration
FIX: priority_inversion_bound A0 + bound_on_total_ep_workload A0 (A0 + F) + total_hp_rbf (A0 + F) + (task_request_bound_function tsk (A0 + 1) - (task_cost tsk - task_rtct tsk)) <= A0 + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

exists F : nat, task_request_bound_function tsk (A0 + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A0 (A0 + F) <= A0 + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, AbstractRTAforELFwithArrivalCurves.is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
is_in_search_space:= search_space.is_in_search_space L total_interference_bound: nat -> Prop
A0: nat
IN: is_in_search_space A0
F: duration
FIX: priority_inversion_bound A0 + bound_on_total_ep_workload A0 (A0 + F) + total_hp_rbf (A0 + F) + (task_request_bound_function tsk (A0 + 1) - (task_cost tsk - task_rtct tsk)) <= A0 + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_request_bound_function tsk (A0 + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A0 (A0 + F) <= A0 + F
by rewrite -{2}(leqRW FIX) addnC. Qed. End ResponseTimeReccurence. (** ** I. Soundness of the Response-Time Bound *) (** Finally, we prove that [R] is a bound on the response time of the task [tsk]. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j

job_response_time_bound sched j R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

job_response_time_bound sched j R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j
task_interference_is_bounded_by arr_seq sched tsk ?task_IBF
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j
forall A : duration, search_space.is_in_search_space L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + ?task_IBF A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + ?task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

work_conserving arr_seq sched
exact: instantiated_i_and_w_are_coherent_with_schedule.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

busy_intervals_are_bounded_by arr_seq sched tsk L
exact: instantiated_busy_intervals_are_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

task_interference_is_bounded_by arr_seq sched tsk ?task_IBF
exact: instantiated_task_interference_is_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
H1: TaskMaxNonpreemptiveSegment Task
H2: MaxArrivals Task
H3: PriorityPoint Task
Job: JobType
H4: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_task_set: uniq ts
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
FP: FP_policy Task
H_reflexive_priorities: reflexive_task_priorities FP
H_transitive_priorities: transitive_task_priorities FP
H_total_priorities: total_task_priorities FP
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (ELF FP)
H_work_conserving: work_conserving.work_conserving arr_seq sched
is_lower_priority:= fun j' : Job => hp_task tsk (job_task j'): Job -> bool
priority_inversion_lp_tasks_bound: duration
H_priority_inversion_from_lp_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_lower_priority (constant priority_inversion_lp_tasks_bound)
is_equal_priority:= fun j' : Job => ep_task tsk (job_task j'): Job -> bool
priority_inversion_ep_tasks_bound: duration -> duration
H_priority_inversion_from_ep_tasks_is_bounded: priority_inversion_cond_is_bounded_by arr_seq sched tsk is_equal_priority priority_inversion_ep_tasks_bound
blocking_relevant:= fun tsk_o : Task => (0 < max_arrivals tsk_o 1) && (0 < task_cost tsk_o): Task -> bool
is_ep_causing_intf:= fun (j : Job) (t1 : instant) (tsk_other : Task) => (0 <= (job_arrival j)%:R - t1%:R + task_priority_point tsk - task_priority_point tsk_other)%R: Job -> instant -> Task -> bool
ep_task_blocking_relevant:= fun (tsk_other : Task) (j : Job) (t1 : instant) => ep_task tsk_other tsk && ~~ is_ep_causing_intf j t1 tsk_other && blocking_relevant tsk_other: Task -> Job -> instant -> bool
H_priority_inversion_from_ep_tasks_concrete_bound: forall (j : Job) (t1 : nat), job_task j = tsk -> priority_inversion_ep_tasks_bound (job_arrival j - t1) <= \max_(i <- ts | ep_task_blocking_relevant i j t1) task_cost i
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_lp_tasks_bound + total_hep_rbf L
total_interference_bound:= fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_IBF A Δ: duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + bound_on_total_ep_workload A (A + F) + total_hp_rbf (A + F) + (task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk)) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
j: Job
ARRs: arrives_in arr_seq j
TSKs: job_of_task tsk j
POS: 0 < job_cost j

forall A : duration, search_space.is_in_search_space L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_IBF A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
exact: response_time_recurrence_solution_exists. Qed. End AbstractRTAforELFwithArrivalCurves.