Built with
Alectryon , running Coq+SerAPI v8.20.0+0.20.0. Bubbles (
) indicate interactive fragments: hover for details, tap to reveal contents. Use
Ctrl+↑ Ctrl+↓ to navigate,
Ctrl+🖱️ to focus. On Mac, use
⌘ instead of
Ctrl .
Require Import prosa.model.readiness.basic.[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done ] [Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done ] [Loading ML file ring_plugin.cmxs (using legacy method) ... done ] Serlib plugin: coq-elpi.elpi is not available: serlib support is missing.
Incremental checking for commands in this plugin will be impacted. [Loading ML file coq-elpi.elpi ... done ] [Loading ML file zify_plugin.cmxs (using legacy method) ... done ] [Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done ] [Loading ML file micromega_plugin.cmxs (using legacy method) ... done ] [Loading ML file btauto_plugin.cmxs (using legacy method) ... done ] Notation "_ + _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ - _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ <= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ < _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ >= _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ > _" was already used in scope nat_scope.
[notation-overridden,parsing,default]Notation "_ <= _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ < _ <= _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ <= _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ < _ < _" was already used in scope
nat_scope. [notation-overridden,parsing,default]Notation "_ * _" was already used in scope nat_scope.
[notation-overridden,parsing,default]
Require Import prosa.analysis.facts.priority.fifo.
Require Export prosa.analysis.facts.priority.fifo_ahep_bound.
Require Export prosa.analysis.abstract .ideal.cumulative_bounds.
Require Export prosa.analysis.abstract .ideal.abstract_rta.
Require Export prosa.analysis.facts.model.task_cost.
(** The formal development and the proofs in this file are described in-depth in
the following paper:
- Bedarkar et al., _"From Intuition to Coq: A Case Study in Verified
Response-Time Analysis of FIFO Scheduling"_, RTSS'22.
The interested reader is invited to follow along in parallel both in the
paper and here. In particular, the below sections labeled _A_ through _H_
correspond directly to the equivalently labeled subsections in Section IV of
the paper. *)
(** * Response-Time Analysis for FIFO Schedulers *)
(** In the following, we derive a response-time analysis for FIFO schedulers,
assuming a workload of sporadic real-time tasks characterized by arbitrary
arrival curves executing upon an ideal uniprocessor. To this end, we
instantiate the _abstract Response-Time Analysis_ (aRTA) as provided in the
[prosa.analysis.abstract] module. *)
Section AbstractRTAforFIFOwithArrivalCurves .
(** ** A. Defining the System Model *)
(** Before any formal claims can be stated, an initial setup is needed to
define the system model under consideration. To this end, we next
introduce and define the following notions using Prosa's standard
definitions and behavioral semantics:
- tasks, jobs, and their parameters,
- the sequence of job arrivals,
- worst-case execution time (WCET) and the absence of self-suspensions,
- the set of tasks under analysis,
- the task under analysis, and, finally,
- an arbitrary schedule of the task set. *)
(** *** Tasks and Jobs *)
(** Consider any type of tasks, each characterized by a WCET [task_cost], an arrival
curve [max_arrivals], and a run-to-completion threshold [task_rtct], ... *)
Context {Task : TaskType}.
Context `{TaskCost Task}.
Context `{MaxArrivals Task}.
Context `{TaskRunToCompletionThreshold Task}.
(** ... and any type of jobs associated with these tasks, where each job has
an arrival time [job_arrival], a cost [job_cost], and an arbitrary
preemption model indicated by [job_preemptable]. *)
Context {Job : JobType} `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobPreemptable Job}.
(** *** The Job Arrival Sequence *)
(** Consider any arrival sequence [arr_seq] with consistent, non-duplicate arrivals. *)
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
(** *** Absence of Self-Suspensions and WCET Compliance *)
(** We assume the classic (i.e., Liu & Layland) model of readiness without
jitter or self-suspensions, wherein [pending] jobs are always ready. *)
#[local] Existing Instance basic_ready_instance .
(** We further require that a job's cost cannot exceed its task's stated
WCET. *)
Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq.
(** *** The Task Set *)
(** We consider an arbitrary task set [ts]... *)
Variable ts : seq Task.
(** ... and assume that all jobs stem from tasks in this task set. *)
Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
(** Furthermore, we assume that [max_arrivals] is a family of valid arrival
curves that constrains the arrival sequence [arr_seq], i.e., for any task
[tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and ... *)
Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts.
(** ... (2) a monotonic function that equals 0 for the empty interval [delta = 0]. *)
Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals.
(** *** The Task Under Analysis *)
(** Let [tsk] be any task in [ts] that is to be analyzed. *)
Variable tsk : Task.
Hypothesis H_tsk_in_ts : tsk \in ts.
(** We assume that [tsk] is described by a valid task _run-to-completion
threshold_. That is, there exists a task parameter [task_rtct] such
that [task_rtct tsk] is
- (1) no larger than [tsk]'s WCET, and
- (2) for any job of task [tsk], the job's run-to-completion threshold
[job_rtct] is bounded by [task_rtct tsk]. *)
Hypothesis H_valid_run_to_completion_threshold :
valid_task_run_to_completion_threshold arr_seq tsk.
(** *** The Schedule *)
(** Finally, consider any arbitrary, valid ideal uni-processor schedule of the
given arrival sequence [arr_seq] (and hence the given task set [ts]). *)
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
(** We assume that the schedule complies with the preemption model ... *)
Hypothesis H_valid_preemption_model : valid_preemption_model arr_seq sched.
(** ... and, last but not least, that it respects the [FIFO] scheduling
policy. *)
Hypothesis H_respects_policy_at_preemption_point :
respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job).
(** ** B. Encoding the Scheduling Policy and Preemption Model *)
(** With the system model in place, the next step is to encode the
scheduling policy and preemption model such that aRTA becomes
applicable. To this end, we encode the semantics of the
scheduling policy and preemption model using two functions, by
convention called [interference] and [interfering_workload]. The
paper explains the idea behind these two functions and how they
interact in much more detail. At the code level, we fortunately
can simply reuse the existing general definitions of
_interference_ and _interfering workload_ that apply to any
job-level fixed-priority (JLFP) policy (as provided in the
module [analysis.abstract.ideal.iw_instantiation]). *)
#[local] Instance ideal_jlfp_interference : Interference Job :=
ideal_jlfp_interference arr_seq sched.
#[local] Instance ideal_jlfp_interfering_workload : InterferingWorkload Job :=
ideal_jlfp_interfering_workload arr_seq sched.
(** Please refer to the general definitions (by clicking on the links above)
to see how they correspond to the definitions provided in Listing 3 of the
paper (they are identical). *)
(** ** C. Classic and Abstract Work Conservation *)
(** The next step is to connect the classic notion of work conservation with
the abstract notion assumed by aRTA. First, let us recall the abstract and
classic notations of work conservation as [work_conserving_ab] and
[work_conserving_cl], respectively. *)
Let work_conserving_ab := abstract .definitions.work_conserving arr_seq sched.
Let work_conserving_cl := work_conserving.work_conserving arr_seq sched.
(** In the following, we make the standard assumption that the schedule is
work-conserving in the classic sense. *)
Hypothesis H_work_conserving : work_conserving_cl.
(** As explained in much detail in the paper, a general proof obligation of
aRTA is to show that its abstract notion of work conservation is also
satisfied. That is, the classic, policy-specific notion assumed in
[H_work_conserving] needs to be "translated" into the abstract notion
understood by aRTA. Fortunately, in our case the proof is trivial: as a
benefit of reusing the general definitions of [interference] and
[interfering_workload] for JLFP policies, we can reuse the existing
general lemma [instantiated_i_and_w_are_coherent_with_schedule]. This
lemma immediately allows us to conclude that the schedule is
work-conserving in the abstract sense with respect to [interference] and
[interfering_workload]. *)
Fact abstractly_work_conserving : work_conserving_ab.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl
work_conserving_ab
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl
work_conserving_ab
exact : instantiated_i_and_w_are_coherent_with_schedule. Qed .
(** The preceding fact [abstractly_work_conserving] corresponds to Lemma 1 in
the paper. To see the correspondence, refer to the definition of
[definitions.work_conserving] (by clicking the link in the above
definition). *)
(** ** D. Bounding the Maximum Busy-Window Length *)
(** The next step is to establish a bound on the maximum busy-window length,
which aRTA requires to be given. *)
(** To this end, we assume that we are given a positive value [L] ...*)
Variable L : duration.
Hypothesis H_L_positive : L > 0 .
(** ... that is a fixed point of the following equation. *)
Hypothesis H_fixed_point : L = total_request_bound_function ts L.
(** Given this definition of [L], it is our proof obligation to show that all
busy windows (in the _abstract_ sense) are indeed bounded by [L]. To this
end, let us first recall the notion of a bound on the maximum busy-window
length (or, interchangeably, busy-interval length) as understood by
aRTA. *)
Let busy_windows_are_bounded_by L :=
busy_intervals_are_bounded_by arr_seq sched tsk L.
(** We observe that the length of any (abstract) busy window in [sched] is
indeed bounded by [L]. Again, the proof is trivial because we can reuse a
general lemma, namely [instantiated_busy_intervals_are_bounded] in this
case, due to the choice to reuse the existing JLFP definitions of
[interference] and [interfering_workload]. *)
Fact busy_windows_are_bounded : busy_windows_are_bounded_by L.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop
busy_windows_are_bounded_by L
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop
busy_windows_are_bounded_by L
exact : instantiated_busy_intervals_are_bounded. Qed .
(** The preceding fact [busy_windows_are_bounded] correspond to Lemma 2 in the
paper. To clearly see the correspondence, refer to the definition of
[busy_intervals_are_bounded_by] (by clicking on the link in the definition
above). *)
(** ** E. Defining the Interference Bound Function (IBF) *)
(** Finally, we define the _interference bound function_ ([IBF]). [IBF] bounds
the cumulative interference incurred by a job in its busy window. In
general, aRTA expects to reason about an IBF parametric in two parameters,
a _relative arrival offset_ [A] and an _interval length_ [Δ], as described
in the paper. In our specific case, for [FIFO] scheduling, only [A] is
actually relevant. We therefore define [IBF] as the sum, across all
tasks, of the per-task request-bound functions (RBFs) in the interval [A +
ε] minus the WCET of the task under analysis [tsk]. *)
Let IBF (A Δ : duration) :=
(\sum_(tsko <- ts) task_request_bound_function tsko (A + ε)) - task_cost tsk.
(** As discussed in the paper, our proof obligation now is to show that the
stated [IBF] is indeed correct. To this end, we first establish two
auxiliary lemmas. *)
(** *** Absence of Priority Inversion *)
(** Because we reuse the general JLFP notions of [interference] and
[interfering_workload], which allowed us to save much proof effort in the
preceding sections, we must reason about priority inversion. While
priority inversion is _conceptually_ not relevant under FIFO scheduling,
it clearly is a factor in the general JLFP case, and hence shows up in the
definitions of [interference] and [interfering_workload]. We therefore
next show it to be _actually_ impossible, too, by proving that, under FIFO
scheduling, the cumulative priority inversion experienced by a job [j] in
any interval within its busy window is always [0]. *)
Section AbsenceOfPriorityInversion .
(** Consider any job [j] of the task under analysis [tsk]. *)
Variable j : Job.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_of_task tsk j.
(** Assume that the job has a positive cost (as we later do not need to
reason about zero-cost jobs). *)
Hypothesis H_job_cost_positive : job_cost_positive j.
(** Assume the busy interval of the job [j] is given by <<[t1,t2)>>. *)
Variable t1 t2 : duration.
Hypothesis H_busy_interval :
definitions.busy_interval sched j t1 t2.
(** Consider any sub-interval <<[t1, t1 + Δ)>> of the busy interval of [j]. *)
Variable Δ : duration.
Hypothesis H_Δ_in_busy : t1 + Δ < t2.
(** We prove that the cumulative priority inversion in the interval <<[t1, t1 + Δ)>>
is indeed [0]. *)
Lemma no_priority_inversion :
cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) = 0 .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) = 0
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) = 0
apply /eqP; rewrite -leqn0.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) <= 0
pose zf : nat -> nat := (fun => 0 ).Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2 zf := (fun => 0 ) : nat -> nat : nat -> nat
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) <= 0
have : cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= zf (job_arrival j - t1);
last by apply .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2 zf := (fun => 0 ) : nat -> nat : nat -> nat
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) <= zf (job_arrival j - t1)
apply : cumulative_priority_inversion_is_bounded => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2 zf := (fun => 0 ) : nat -> nat : nat -> nat
priority_inversion_is_bounded_by arr_seq sched tsk zf
have -> : priority_inversion_is_bounded_by arr_seq sched tsk zf
= priority_inversion_is_bounded_by arr_seq sched tsk (constant 0 ) by [].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat j : Job H_j_arrives : arrives_in arr_seq j H_job_of_tsk : job_of_task tsk j H_job_cost_positive : job_cost_positive j t1, t2 : duration H_busy_interval : definitions.busy_interval sched j t1
t2 Δ : duration H_Δ_in_busy : t1 + Δ < t2 zf := (fun => 0 ) : nat -> nat : nat -> nat
priority_inversion_is_bounded_by arr_seq sched tsk
(constant 0 )
exact : FIFO_implies_no_pi.
Qed .
End AbsenceOfPriorityInversion .
(** *** Higher- and Equal-Priority Interference *)
(** We establish a bound on the interference produced by higher- and
equal-priority jobs in a separate file. To see the result,
simply click on the link bellow. *)
Let bound_on_hep_workload :=
@analysis.facts.priority.fifo_ahep_bound.bound_on_hep_workload.
(** *** Correctness of [IBF] *)
(** Combining the bound on interference due to lower-priority jobs
(priority inversion, i.e., [no_priority_inversion]) and the
interference due to higher- or equal-priority jobs
([bound_on_hep_workload]), we can prove that [IBF] indeed bounds
the total interference.
Notice that, unlike the aRTA framework published at ECRTS'20,
generalized aRTA supports custom parameters for [IBF]. Hence, we
have to specify that the first argument of [IBF] represents the
relative arrival time of a job under analysis by passing a
proposition [relative_arrival_time_of_job_is_A]. *)
Lemma IBF_correct :
job_interference_is_bounded_by
arr_seq sched tsk IBF (relative_arrival_time_of_job_is_A sched).Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tsk
job_interference_is_bounded_by arr_seq sched tsk IBF
(relative_arrival_time_of_job_is_A sched)
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tsk
job_interference_is_bounded_by arr_seq sched tsk IBF
(relative_arrival_time_of_job_is_A sched)
move => t1 t2 Δ j ARRj TSKj BUSY IN_BUSY NCOMPL A Pred.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A
cumul_cond_interference (fun => xpredT) j t1 (t1 + Δ) <=
IBF A Δ
rewrite fold_cumul_interference cumulative_interference_split //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) +
cumulative_another_hep_job_interference arr_seq sched
j t1 (t1 + Δ) <= IBF A Δ
have JPOS: job_cost_positive j by rewrite -ltnNge in NCOMPL; unfold job_cost_positive; lia .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A JPOS : job_cost_positive j
cumulative_priority_inversion arr_seq sched j t1
(t1 + Δ) +
cumulative_another_hep_job_interference arr_seq sched
j t1 (t1 + Δ) <= IBF A Δ
rewrite (no_priority_inversion j ARRj _ JPOS _ t2) //= add0n.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A JPOS : job_cost_positive j
cumulative_another_hep_job_interference arr_seq sched
j t1 (t1 + Δ) <= IBF A Δ
have ->: A = job_arrival j - t1 by erewrite Pred with (t1 := t1); [lia | apply BUSY].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A JPOS : job_cost_positive j
cumulative_another_hep_job_interference arr_seq sched
j t1 (t1 + Δ) <= IBF (job_arrival j - t1) Δ
apply : bound_on_hep_workload; (try apply IN_BUSY) => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskt1, t2 : instant Δ : nat j : Job ARRj : arrives_in arr_seq j TSKj : job_of_task tsk j BUSY : definitions.busy_interval sched j t1 t2 IN_BUSY : t1 + Δ < t2 NCOMPL : ~~ completed_by sched j (t1 + Δ) A : nat Pred : relative_arrival_time_of_job_is_A sched j A JPOS : job_cost_positive j
busy_interval arr_seq sched j t1 t2
by apply instantiated_busy_interval_equivalent_busy_interval.
Qed .
(** The preceding lemma [IBF_correct] corresponds to Lemma 3 in the paper. To
see the correspondence more clearly, refer to the definition of
[job_interference_is_bounded_by] in the above lemma. *)
(** ** F. Defining the Search Space *)
(** In this section, we define the concrete search space for [FIFO] and relate
it to the abstract search space of aRTA. In the case of [FIFO], the concrete
search space is the set of offsets less than [L] such that there exists a
task [tsk'] in [ts] such that [r bf tsk' (A) ≠ rbf tsk' (A + ε)]. *)
Definition is_in_concrete_search_space (A : duration) :=
(A < L) && has (fun tsk' => task_request_bound_function tsk' (A) !=
task_request_bound_function tsk' ( A + ε )) ts.
(** To enable the use of aRTA, we must now show that any offset [A] included
in the abstract search space is also included in the concrete search
space. That is, we must show that the concrete search space is a
refinement of the abstract search space assumed by aRTA. *)
(** To this end, first recall the notion of the abstract search space in aRTA. *)
Let is_in_abstract_search_space A := abstract .search_space.is_in_search_space L IBF A.
Section SearchSpaceRefinement .
(** To rule out pathological cases with the concrete search space,
we assume that the task cost is positive and the arrival curve
is non-pathological. *)
Hypothesis H_task_cost_pos : 0 < task_cost tsk.
Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε.
(** Under this assumption, given any [A] from the _abstract_ search space, ... *)
Variable A : nat.
Hypothesis H_in_abstract : is_in_abstract_search_space A.
(** ... we prove that [A] is also in the concrete search space. In other
words, we prove that the abstract search space is a subset of the
concrete search space. *)
Lemma search_space_refinement : is_in_concrete_search_space A.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A
is_in_concrete_search_space A
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A
is_in_concrete_search_space A
move : H_in_abstract => [INSP | [/andP [POSA LTL] [x [LTx INSP2]]]].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A INSP : A = 0
is_in_concrete_search_space A
{ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A INSP : A = 0
is_in_concrete_search_space A
subst A.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
is_in_concrete_search_space 0
apply /andP; split => [//|].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
has
(fun tsk' : Task =>
task_request_bound_function tsk' 0
!= task_request_bound_function tsk' (0 + 1 )) ts
apply /hasP.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
exists2 x : Task,
x \in ts &
task_request_bound_function x 0
!= task_request_bound_function x (0 + 1 )
exists tsk => [//|].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
task_request_bound_function tsk 0
!= task_request_bound_function tsk (0 + 1 )
rewrite neq_ltn;apply /orP; left .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
task_request_bound_function tsk 0 <
task_request_bound_function tsk (0 + 1 )
rewrite task_rbf_0_zero // add0n.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 H_in_abstract : is_in_abstract_search_space 0
0 < task_request_bound_function tsk 1
by apply task_rbf_epsilon_gt_0 => //.
} Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : IBF (A - 1 ) x <> IBF A x
is_in_concrete_search_space A
{ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : IBF (A - 1 ) x <> IBF A x
is_in_concrete_search_space A
apply /andP; split => [//|].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : IBF (A - 1 ) x <> IBF A x
has
(fun tsk' : Task =>
task_request_bound_function tsk' A
!= task_request_bound_function tsk' (A + 1 )) ts
apply /hasPn.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : IBF (A - 1 ) x <> IBF A x
~
{in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))}
move => EQ2.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : IBF (A - 1 ) x <> IBF A x EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))}
False
unfold IBF in INSP2.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L INSP2 : \sum_(tsko <- ts)
task_request_bound_function tsko
(A - 1 + 1 ) -
task_cost tsk <>
\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))}
False
rewrite subnK in INSP2 => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))} INSP2 : \sum_(tsko <- ts)
task_request_bound_function tsko A -
task_cost tsk <>
\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk
False
apply INSP2; clear INSP2.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))}
\sum_(tsko <- ts) task_request_bound_function tsko A -
task_cost tsk =
\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk
have ->// : \sum_(tsko <- ts) task_request_bound_function tsko A =
\sum_(tsko <- ts) task_request_bound_function tsko (A + ε).Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))}
\sum_(tsko <- ts) task_request_bound_function tsko A =
\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 )
apply eq_big_seq => //= task IN.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop H_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat H_in_abstract : is_in_abstract_search_space A POSA : 0 < ALTL : A < L x : nat LTx : x < L EQ2 : {in ts,
forall x : Task,
~~
(task_request_bound_function x A
!= task_request_bound_function x (A + 1 ))} task : Task IN : task \in ts
task_request_bound_function task A =
task_request_bound_function task (A + 1 )
by move : (EQ2 task IN) => /negPn /eqP. }
Qed .
(** The preceding lemma [search_space_refinement] corresponds to Lemma 4 in
the paper, which is apparent after consulting the definitions of the
abstract and concrete search spaces. *)
End SearchSpaceRefinement .
(** ** G. Stating the Response-Time Bound [R] *)
(** Having established all necessary preliminaries, it is finally time to
state the claimed response-time bound [R]. *)
Variable R : duration.
Hypothesis H_R_max :
forall (A : duration),
is_in_concrete_search_space A ->
exists (F : nat),
A + F >= \sum_(tsko <- ts) task_request_bound_function tsko (A + ε)
/\ F <= R.
(** Ultimately, we seek to apply aRTA to prove the correctness of this [R].
However, in order to connect the concrete definition of [R] with aRTA, we
must first restate the bound in the shape of the abstract response-time
bound equation that aRTA expects, which we do next. *)
Section ResponseTimeBoundRestated .
(** To rule out pathological cases with the [H_R_is_maximum_seq]
equation (such as [task_cost tsk] being greater than [task_rbf
(A + ε)]), we assume that the arrival curve is
non-pathological. *)
Hypothesis H_task_cost_pos : 0 < task_cost tsk.
Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε.
(** We know that:
- if [A] is in the abstract search space, then it is also in
the concrete search space; and
- if [A] is in the concrete search space, then there exists a solution
that satisfies the inequalities stated in [H_R_is_maximum].
Using these facts, we prove that, if [A] is in the abstract search
space, then there also exists a solution [F] to the response-time
equation as expected by aRTA. *)
Lemma soln_abstract_response_time_recurrence :
forall A ,
is_in_abstract_search_space A ->
exists (F : nat),
A + F >= task_rtct tsk + IBF A (A + F)
/\ F + (task_cost tsk - task_rtct tsk) <= R.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1
forall A : nat,
is_in_abstract_search_space A ->
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1
forall A : nat,
is_in_abstract_search_space A ->
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
move => A IN.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_abstract_search_space A
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
eapply search_space_refinement in IN => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
move : (H_R_max _ IN) => [F [FIX NEQ]].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
have R_GE_TC: task_cost tsk <= R.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R
task_cost tsk <= R
{ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R
task_cost tsk <= R
move : (H_R_max 0 ) => SEARCH; feed SEARCH;
first by eapply search_space_refinement => //; left .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R SEARCH : exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko (0 + 1 ) <=
0 + F /\
F <= R
task_cost tsk <= R
move : SEARCH => [F' [LE1 LE2]].Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R F' : nat LE1 : \sum_(tsko <- ts)
task_request_bound_function tsko (0 + 1 ) <=
0 + F' LE2 : F' <= R
task_cost tsk <= R
rewrite !add0n in LE1.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R F' : nat LE2 : F' <= R LE1 : \sum_(tsko <- ts)
task_request_bound_function tsko 1 <= F'
task_cost tsk <= R
rewrite -(leqRW LE2) -(leqRW LE1).Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R F' : nat LE2 : F' <= R LE1 : \sum_(tsko <- ts)
task_request_bound_function tsko 1 <= F'
task_cost tsk <=
\sum_(tsko <- ts) task_request_bound_function tsko 1
by apply : task_cost_le_sum_rbf. } Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
exists (R - (task_cost tsk - task_rtct tsk)); split .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_rtct tsk +
IBF A (A + (R - (task_cost tsk - task_rtct tsk))) <=
A + (R - (task_cost tsk - task_rtct tsk))
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_rtct tsk +
IBF A (A + (R - (task_cost tsk - task_rtct tsk))) <=
A + (R - (task_cost tsk - task_rtct tsk))
rewrite /IBF.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_rtct tsk +
(\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk) <=
A + (R - (task_cost tsk - task_rtct tsk))
rewrite (leqRW FIX) addnC -subnA; first last .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_cost tsk <= A + F
+ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_cost tsk <= A + F
rewrite -(leqRW FIX).Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_cost tsk <=
\sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 )
apply : (task_cost_le_sum_rbf _ _ _ ) => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
0 < A + 1
by rewrite addn1.
+ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_rtct tsk <= task_cost tsk
by move : H_valid_run_to_completion_threshold => [TASKvalid JOBvalid].
+ Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
A + F - (task_cost tsk - task_rtct tsk) <=
A + (R - (task_cost tsk - task_rtct tsk))
rewrite addnBA; first by rewrite leq_sub2r // leq_add2l.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_cost tsk - task_rtct tsk <= R
by apply leq_trans with (task_cost tsk); [lia |].
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
R - (task_cost tsk - task_rtct tsk) +
(task_cost tsk - task_rtct tsk) <= R
rewrite subnK; first by done .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= RH_task_cost_pos : 0 < task_cost tskH_arrival_curve_pos : 0 < max_arrivals tsk 1 A : nat IN : is_in_concrete_search_space A F : nat FIX : \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) <=
A + F NEQ : F <= R R_GE_TC : task_cost tsk <= R
task_cost tsk - task_rtct tsk <= R
by apply leq_trans with (task_cost tsk); [lia | ].
Qed .
(** Lemma [soln_abstract_response_time_recurrence] is shown in Listing 3 in
the paper. *)
End ResponseTimeBoundRestated .
(** ** H. Soundness of the Response-Time Bound *)
(** Finally, we are in a position to establish the soundness of the claimed
response-time bound [R] by applying the main general aRTA theorem
[uniprocessor_response_time_bound]. *)
Theorem uniprocessor_response_time_bound_FIFO :
task_response_time_bound arr_seq sched tsk R.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= R
task_response_time_bound arr_seq sched tsk R
Proof .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= R
task_response_time_bound arr_seq sched tsk R
move => js ARRs TSKs.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js
job_response_time_bound sched js R
rewrite /job_response_time_bound /completed_by.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js
job_cost js <= service sched js (job_arrival js + R)
case : (posnP (@job_cost _ _ js)) => [ -> |POS]; first by done .Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
job_cost js <= service sched js (job_arrival js + R)
eapply uniprocessor_response_time_bound_ideal => //.Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
work_conserving arr_seq sched
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
work_conserving arr_seq sched
exact : abstractly_work_conserving.
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk ?L
exact : busy_windows_are_bounded.
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
job_interference_is_bounded_by arr_seq sched tsk
?interference_bound_function
(relative_arrival_time_of_job_is_A sched)
exact : IBF_correct.
- Task : TaskType H : TaskCost Task H0 : MaxArrivals Task H1 : TaskRunToCompletionThreshold Task Job : JobType H2 : JobTask Job Task H3 : JobArrival Job H4 : JobCost Job H5 : JobPreemptable Job arr_seq : arrival_sequence Job H_valid_arrival_sequence : valid_arrival_sequence
arr_seq H_valid_job_cost : arrivals_have_valid_job_costs
arr_seq ts : seq Task H_all_jobs_from_taskset : all_jobs_from_taskset
arr_seq ts H_is_arrival_curve : taskset_respects_max_arrivals
arr_seq ts H_valid_arrival_curve : valid_taskset_arrival_curve ts
max_arrivals tsk : Task H_tsk_in_ts : tsk \in ts H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold
arr_seq tsk sched : schedule (ideal.processor_state Job) H_valid_schedule : valid_schedule sched arr_seq H_valid_preemption_model : valid_preemption_model
arr_seq sched H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point
arr_seq sched
(FIFO Job) work_conserving_ab := work_conserving arr_seq sched : Prop work_conserving_cl := work_conserving.work_conserving
arr_seq sched : Prop H_work_conserving : work_conserving_cl L : duration H_L_positive : 0 < LH_fixed_point : L = total_request_bound_function ts L busy_windows_are_bounded_by := [eta busy_intervals_are_bounded_by
arr_seq sched tsk] : nat -> Prop IBF := fun A : duration =>
fun => \sum_(tsko <- ts)
task_request_bound_function tsko (A + 1 ) -
task_cost tsk: duration -> duration -> nat bound_on_hep_workload := @fifo_ahep_bound.bound_on_hep_workload : forall (Task : TaskType)
(H : TaskCost Task)
(H0 : MaxArrivals Task)
(Job : JobType)
(H1 : JobTask Job Task)
(H2 : JobCost Job)
(H3 : JobArrival Job)
(PState :
ProcessorState Job),
uniprocessor_model PState ->
unit_supply_proc_model PState ->
forall
arr_seq :
arrival_sequence Job,
valid_arrival_sequence arr_seq ->
arrivals_have_valid_job_costs
arr_seq ->
forall ts : seq Task,
all_jobs_from_taskset arr_seq
ts ->
taskset_respects_max_arrivals
arr_seq ts ->
valid_taskset_arrival_curve ts
max_arrivals ->
forall tsk : Task,
tsk \in ts ->
forall sched : schedule PState,
jobs_must_arrive_to_execute
sched ->
completed_jobs_dont_execute
sched ->
forall j : Job,
job_of_task tsk j ->
arrives_in arr_seq j ->
job_cost_positive j ->
forall t1 t2 : instant,
busy_interval arr_seq sched j
t1 t2 ->
forall Δ : instant,
t1 + Δ < t2 ->
cumulative_another_hep_job_interference
arr_seq sched j t1
(t1 + Δ) <=
\sum_(tsko <- ts)
task_request_bound_function
tsko ... -
task_cost tskis_in_abstract_search_space := [eta is_in_search_space L
IBF] : nat -> Prop R : duration H_R_max : forall A : duration,
is_in_concrete_search_space A ->
exists F : nat,
\sum_(tsko <- ts)
task_request_bound_function tsko
(A + 1 ) <=
A + F /\
F <= Rjs : Job ARRs : arrives_in arr_seq js TSKs : job_of_task tsk js POS : 0 < job_cost js
forall A : nat,
is_in_search_space L IBF A ->
exists F : nat,
task_rtct tsk + IBF A (A + F) <= A + F /\
F + (task_cost tsk - task_rtct tsk) <= R
exact : soln_abstract_response_time_recurrence.
Qed .
(** The preceding theorem [uniprocessor_response_time_bound_FIFO] corresponds
to Theorem 2 in the paper. The correspondence becomes clearer when referring
to the definition of [task_response_time_bound], and then in turn to the
definitions of [job_of_task] and [job_response_time_bound]. *)
End AbstractRTAforFIFOwithArrivalCurves .