Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Import prosa.analysis.facts.priority.fifo. Require Export prosa.analysis.facts.priority.fifo_ahep_bound. Require Export prosa.analysis.abstract.ideal.cumulative_bounds. Require Export prosa.analysis.abstract.ideal.abstract_rta. Require Export prosa.analysis.facts.model.task_cost. (** The formal development and the proofs in this file are described in-depth in the following paper: - Bedarkar et al., _"From Intuition to Coq: A Case Study in Verified Response-Time Analysis of FIFO Scheduling"_, RTSS'22. The interested reader is invited to follow along in parallel both in the paper and here. In particular, the below sections labeled _A_ through _H_ correspond directly to the equivalently labeled subsections in Section IV of the paper. *) (** * Response-Time Analysis for FIFO Schedulers *) (** In the following, we derive a response-time analysis for FIFO schedulers, assuming a workload of sporadic real-time tasks characterized by arbitrary arrival curves executing upon an ideal uniprocessor. To this end, we instantiate the _abstract Response-Time Analysis_ (aRTA) as provided in the [prosa.analysis.abstract] module. *) Section AbstractRTAforFIFOwithArrivalCurves. (** ** A. Defining the System Model *) (** Before any formal claims can be stated, an initial setup is needed to define the system model under consideration. To this end, we next introduce and define the following notions using Prosa's standard definitions and behavioral semantics: - tasks, jobs, and their parameters, - the sequence of job arrivals, - worst-case execution time (WCET) and the absence of self-suspensions, - the set of tasks under analysis, - the task under analysis, and, finally, - an arbitrary schedule of the task set. *) (** *** Tasks and Jobs *) (** Consider any type of tasks, each characterized by a WCET [task_cost], an arrival curve [max_arrivals], and a run-to-completion threshold [task_rtct], ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{MaxArrivals Task}. Context `{TaskRunToCompletionThreshold Task}. (** ... and any type of jobs associated with these tasks, where each job has an arrival time [job_arrival], a cost [job_cost], and an arbitrary preemption model indicated by [job_preemptable]. *) Context {Job : JobType} `{JobTask Job Task}. Context `{JobArrival Job}. Context `{JobCost Job}. Context `{JobPreemptable Job}. (** *** The Job Arrival Sequence *) (** Consider any arrival sequence [arr_seq] with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** *** Absence of Self-Suspensions and WCET Compliance *) (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein [pending] jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** We further require that a job's cost cannot exceed its task's stated WCET. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** *** The Task Set *) (** We consider an arbitrary task set [ts]... *) Variable ts : seq Task. (** ... and assume that all jobs stem from tasks in this task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Furthermore, we assume that [max_arrivals] is a family of valid arrival curves that constrains the arrival sequence [arr_seq], i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and ... *) Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** ... (2) a monotonic function that equals 0 for the empty interval [delta = 0]. *) Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** *** The Task Under Analysis *) (** Let [tsk] be any task in [ts] that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** We assume that [tsk] is described by a valid task _run-to-completion threshold_. That is, there exists a task parameter [task_rtct] such that [task_rtct tsk] is - (1) no larger than [tsk]'s WCET, and - (2) for any job of task [tsk], the job's run-to-completion threshold [job_rtct] is bounded by [task_rtct tsk]. *) Hypothesis H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold arr_seq tsk. (** *** The Schedule *) (** Finally, consider any arbitrary, valid ideal uni-processor schedule of the given arrival sequence [arr_seq] (and hence the given task set [ts]). *) Variable sched : schedule (ideal.processor_state Job). Hypothesis H_valid_schedule : valid_schedule sched arr_seq. (** We assume that the schedule complies with the preemption model ... *) Hypothesis H_valid_preemption_model : valid_preemption_model arr_seq sched. (** ... and, last but not least, that it respects the [FIFO] scheduling policy. *) Hypothesis H_respects_policy_at_preemption_point : respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job). (** ** B. Encoding the Scheduling Policy and Preemption Model *) (** With the system model in place, the next step is to encode the scheduling policy and preemption model such that aRTA becomes applicable. To this end, we encode the semantics of the scheduling policy and preemption model using two functions, by convention called [interference] and [interfering_workload]. The paper explains the idea behind these two functions and how they interact in much more detail. At the code level, we fortunately can simply reuse the existing general definitions of _interference_ and _interfering workload_ that apply to any job-level fixed-priority (JLFP) policy (as provided in the module [analysis.abstract.ideal.iw_instantiation]). *) #[local] Instance ideal_jlfp_interference : Interference Job := ideal_jlfp_interference arr_seq sched. #[local] Instance ideal_jlfp_interfering_workload : InterferingWorkload Job := ideal_jlfp_interfering_workload arr_seq sched. (** Please refer to the general definitions (by clicking on the links above) to see how they correspond to the definitions provided in Listing 3 of the paper (they are identical). *) (** ** C. Classic and Abstract Work Conservation *) (** The next step is to connect the classic notion of work conservation with the abstract notion assumed by aRTA. First, let us recall the abstract and classic notations of work conservation as [work_conserving_ab] and [work_conserving_cl], respectively. *) Let work_conserving_ab := abstract.definitions.work_conserving arr_seq sched. Let work_conserving_cl := work_conserving.work_conserving arr_seq sched. (** In the following, we make the standard assumption that the schedule is work-conserving in the classic sense. *) Hypothesis H_work_conserving : work_conserving_cl. (** As explained in much detail in the paper, a general proof obligation of aRTA is to show that its abstract notion of work conservation is also satisfied. That is, the classic, policy-specific notion assumed in [H_work_conserving] needs to be "translated" into the abstract notion understood by aRTA. Fortunately, in our case the proof is trivial: as a benefit of reusing the general definitions of [interference] and [interfering_workload] for JLFP policies, we can reuse the existing general lemma [instantiated_i_and_w_are_coherent_with_schedule]. This lemma immediately allows us to conclude that the schedule is work-conserving in the abstract sense with respect to [interference] and [interfering_workload]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl

work_conserving_ab
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl

work_conserving_ab
exact: instantiated_i_and_w_are_coherent_with_schedule. Qed. (** The preceding fact [abstractly_work_conserving] corresponds to Lemma 1 in the paper. To see the correspondence, refer to the definition of [definitions.work_conserving] (by clicking the link in the above definition). *) (** ** D. Bounding the Maximum Busy-Window Length *) (** The next step is to establish a bound on the maximum busy-window length, which aRTA requires to be given. *) (** To this end, we assume that we are given a positive value [L] ...*) Variable L : duration. Hypothesis H_L_positive : L > 0. (** ... that is a fixed point of the following equation. *) Hypothesis H_fixed_point : L = total_request_bound_function ts L. (** Given this definition of [L], it is our proof obligation to show that all busy windows (in the _abstract_ sense) are indeed bounded by [L]. To this end, let us first recall the notion of a bound on the maximum busy-window length (or, interchangeably, busy-interval length) as understood by aRTA. *) Let busy_windows_are_bounded_by L := busy_intervals_are_bounded_by arr_seq sched tsk L. (** We observe that the length of any (abstract) busy window in [sched] is indeed bounded by [L]. Again, the proof is trivial because we can reuse a general lemma, namely [instantiated_busy_intervals_are_bounded] in this case, due to the choice to reuse the existing JLFP definitions of [interference] and [interfering_workload]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop

busy_windows_are_bounded_by L
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop

busy_windows_are_bounded_by L
exact: instantiated_busy_intervals_are_bounded. Qed. (** The preceding fact [busy_windows_are_bounded] correspond to Lemma 2 in the paper. To clearly see the correspondence, refer to the definition of [busy_intervals_are_bounded_by] (by clicking on the link in the definition above). *) (** ** E. Defining the Interference Bound Function (IBF) *) (** Finally, we define the _interference bound function_ ([IBF]). [IBF] bounds the cumulative interference incurred by a job in its busy window. In general, aRTA expects to reason about an IBF parametric in two parameters, a _relative arrival offset_ [A] and an _interval length_ [Δ], as described in the paper. In our specific case, for [FIFO] scheduling, only [A] is actually relevant. We therefore define [IBF] as the sum, across all tasks, of the per-task request-bound functions (RBFs) in the interval [A + ε] minus the WCET of the task under analysis [tsk]. *) Let IBF (A Δ : duration) := (\sum_(tsko <- ts) task_request_bound_function tsko (A + ε)) - task_cost tsk. (** As discussed in the paper, our proof obligation now is to show that the stated [IBF] is indeed correct. To this end, we first establish two auxiliary lemmas. *) (** *** Absence of Priority Inversion *) (** Because we reuse the general JLFP notions of [interference] and [interfering_workload], which allowed us to save much proof effort in the preceding sections, we must reason about priority inversion. While priority inversion is _conceptually_ not relevant under FIFO scheduling, it clearly is a factor in the general JLFP case, and hence shows up in the definitions of [interference] and [interfering_workload]. We therefore next show it to be _actually_ impossible, too, by proving that, under FIFO scheduling, the cumulative priority inversion experienced by a job [j] in any interval within its busy window is always [0]. *) Section AbsenceOfPriorityInversion. (** Consider any job [j] of the task under analysis [tsk]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. Hypothesis H_job_of_tsk : job_of_task tsk j. (** Assume that the job has a positive cost (as we later do not need to reason about zero-cost jobs). *) Hypothesis H_job_cost_positive: job_cost_positive j. (** Assume the busy interval of the job [j] is given by <<[t1,t2)>>. *) Variable t1 t2 : duration. Hypothesis H_busy_interval : definitions.busy_interval sched j t1 t2. (** Consider any sub-interval <<[t1, t1 + Δ)>> of the busy interval of [j]. *) Variable Δ : duration. Hypothesis H_Δ_in_busy : t1 + Δ < t2. (** We prove that the cumulative priority inversion in the interval <<[t1, t1 + Δ)>> is indeed [0]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) = 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
zf:= (fun=> 0) : nat -> nat: nat -> nat

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
zf:= (fun=> 0) : nat -> nat: nat -> nat

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= zf (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
zf:= (fun=> 0) : nat -> nat: nat -> nat

priority_inversion_is_bounded_by arr_seq sched tsk zf
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
zf:= (fun=> 0) : nat -> nat: nat -> nat

priority_inversion_is_bounded_by arr_seq sched tsk (constant 0)
exact: FIFO_implies_no_pi. Qed. End AbsenceOfPriorityInversion. (** *** Higher- and Equal-Priority Interference *) (** We establish a bound on the interference produced by higher- and equal-priority jobs in a separate file. To see the result, simply click on the link bellow. *) Let bound_on_hep_workload := @analysis.facts.priority.fifo_ahep_bound.bound_on_hep_workload. (** *** Correctness of [IBF] *) (** Combining the bound on interference due to lower-priority jobs (priority inversion, i.e., [no_priority_inversion]) and the interference due to higher- or equal-priority jobs ([bound_on_hep_workload]), we can prove that [IBF] indeed bounds the total interference. Notice that, unlike the aRTA framework published at ECRTS'20, generalized aRTA supports custom parameters for [IBF]. Hence, we have to specify that the first argument of [IBF] represents the relative arrival time of a job under analysis by passing a proposition [relative_arrival_time_of_job_is_A]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk

job_interference_is_bounded_by arr_seq sched tsk IBF (relative_arrival_time_of_job_is_A sched)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk

job_interference_is_bounded_by arr_seq sched tsk IBF (relative_arrival_time_of_job_is_A sched)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A

cumul_cond_interference (fun=> xpredT) j t1 (t1 + Δ) <= IBF A Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) + cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= IBF A Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A
JPOS: job_cost_positive j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) + cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= IBF A Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A
JPOS: job_cost_positive j

cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= IBF A Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A
JPOS: job_cost_positive j

cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= IBF (job_arrival j - t1) Δ
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
t1, t2: instant
Δ: nat
j: Job
ARRj: arrives_in arr_seq j
TSKj: job_of_task tsk j
BUSY: definitions.busy_interval sched j t1 t2
IN_BUSY: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
Pred: relative_arrival_time_of_job_is_A sched j A
JPOS: job_cost_positive j

busy_interval arr_seq sched j t1 t2
by apply instantiated_busy_interval_equivalent_busy_interval. Qed. (** The preceding lemma [IBF_correct] corresponds to Lemma 3 in the paper. To see the correspondence more clearly, refer to the definition of [job_interference_is_bounded_by] in the above lemma. *) (** ** F. Defining the Search Space *) (** In this section, we define the concrete search space for [FIFO] and relate it to the abstract search space of aRTA. In the case of [FIFO], the concrete search space is the set of offsets less than [L] such that there exists a task [tsk'] in [ts] such that [r bf tsk' (A) ≠ rbf tsk' (A + ε)]. *) Definition is_in_concrete_search_space (A : duration) := (A < L) && has (fun tsk' => task_request_bound_function tsk' (A) != task_request_bound_function tsk' ( A + ε )) ts. (** To enable the use of aRTA, we must now show that any offset [A] included in the abstract search space is also included in the concrete search space. That is, we must show that the concrete search space is a refinement of the abstract search space assumed by aRTA. *) (** To this end, first recall the notion of the abstract search space in aRTA. *) Let is_in_abstract_search_space A := abstract.search_space.is_in_search_space L IBF A. Section SearchSpaceRefinement. (** To rule out pathological cases with the concrete search space, we assume that the task cost is positive and the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** Under this assumption, given any [A] from the _abstract_ search space, ... *) Variable A : nat. Hypothesis H_in_abstract : is_in_abstract_search_space A. (** ... we prove that [A] is also in the concrete search space. In other words, we prove that the abstract search space is a subset of the concrete search space. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
INSP: A = 0

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x
is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
INSP: A = 0

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

is_in_concrete_search_space 0
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

has (fun tsk' : Task => task_request_bound_function tsk' 0 != task_request_bound_function tsk' (0 + 1)) ts
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

exists2 x : Task, x \in ts & task_request_bound_function x 0 != task_request_bound_function x (0 + 1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

task_request_bound_function tsk 0 != task_request_bound_function tsk (0 + 1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

task_request_bound_function tsk 0 < task_request_bound_function tsk (0 + 1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
H_in_abstract: is_in_abstract_search_space 0

0 < task_request_bound_function tsk 1
by apply task_rbf_epsilon_gt_0 => //.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x

is_in_concrete_search_space A
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x

has (fun tsk' : Task => task_request_bound_function tsk' A != task_request_bound_function tsk' (A + 1)) ts
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x

~ {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: IBF (A - 1) x <> IBF A x
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}

False
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: \sum_(tsko <- ts) task_request_bound_function tsko (A - 1 + 1) - task_cost tsk <> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}

False
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}
INSP2: \sum_(tsko <- ts) task_request_bound_function tsko A - task_cost tsk <> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk

False
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}

\sum_(tsko <- ts) task_request_bound_function tsko A - task_cost tsk = \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}

\sum_(tsko <- ts) task_request_bound_function tsko A = \sum_(tsko <- ts) task_request_bound_function tsko (A + 1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
H_in_abstract: is_in_abstract_search_space A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
EQ2: {in ts, forall x : Task, ~~ (task_request_bound_function x A != task_request_bound_function x (A + 1))}
task: Task
IN: task \in ts

task_request_bound_function task A = task_request_bound_function task (A + 1)
by move: (EQ2 task IN) => /negPn /eqP. } Qed. (** The preceding lemma [search_space_refinement] corresponds to Lemma 4 in the paper, which is apparent after consulting the definitions of the abstract and concrete search spaces. *) End SearchSpaceRefinement. (** ** G. Stating the Response-Time Bound [R] *) (** Having established all necessary preliminaries, it is finally time to state the claimed response-time bound [R]. *) Variable R : duration. Hypothesis H_R_max: forall (A : duration), is_in_concrete_search_space A -> exists (F : nat), A + F >= \sum_(tsko <- ts) task_request_bound_function tsko (A + ε) /\ F <= R. (** Ultimately, we seek to apply aRTA to prove the correctness of this [R]. However, in order to connect the concrete definition of [R] with aRTA, we must first restate the bound in the shape of the abstract response-time bound equation that aRTA expects, which we do next. *) Section ResponseTimeBoundRestated. (** To rule out pathological cases with the [H_R_is_maximum_seq] equation (such as [task_cost tsk] being greater than [task_rbf (A + ε)]), we assume that the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** We know that: - if [A] is in the abstract search space, then it is also in the concrete search space; and - if [A] is in the concrete search space, then there exists a solution that satisfies the inequalities stated in [H_R_is_maximum]. Using these facts, we prove that, if [A] is in the abstract search space, then there also exists a solution [F] to the response-time equation as expected by aRTA. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1

forall A : nat, is_in_abstract_search_space A -> exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1

forall A : nat, is_in_abstract_search_space A -> exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_abstract_search_space A

exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A

exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R

exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R

task_cost tsk <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R
exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R

task_cost tsk <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
SEARCH: exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (0 + 1) <= 0 + F /\ F <= R

task_cost tsk <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
F': nat
LE1: \sum_(tsko <- ts) task_request_bound_function tsko (0 + 1) <= 0 + F'
LE2: F' <= R

task_cost tsk <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
F': nat
LE2: F' <= R
LE1: \sum_(tsko <- ts) task_request_bound_function tsko 1 <= F'

task_cost tsk <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
F': nat
LE2: F' <= R
LE1: \sum_(tsko <- ts) task_request_bound_function tsko 1 <= F'

task_cost tsk <= \sum_(tsko <- ts) task_request_bound_function tsko 1
by apply: task_cost_le_sum_rbf.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_rtct tsk + IBF A (A + (R - (task_cost tsk - task_rtct tsk))) <= A + (R - (task_cost tsk - task_rtct tsk))
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R
R - (task_cost tsk - task_rtct tsk) + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_rtct tsk + IBF A (A + (R - (task_cost tsk - task_rtct tsk))) <= A + (R - (task_cost tsk - task_rtct tsk))
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_rtct tsk + (\sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk) <= A + (R - (task_cost tsk - task_rtct tsk))
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_cost tsk <= A + F
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R
task_rtct tsk <= task_cost tsk
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R
A + F - (task_cost tsk - task_rtct tsk) <= A + (R - (task_cost tsk - task_rtct tsk))
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_cost tsk <= A + F
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_cost tsk <= \sum_(tsko <- ts) task_request_bound_function tsko (A + 1)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

0 < A + 1
by rewrite addn1.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_rtct tsk <= task_cost tsk
by move : H_valid_run_to_completion_threshold => [TASKvalid JOBvalid].
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

A + F - (task_cost tsk - task_rtct tsk) <= A + (R - (task_cost tsk - task_rtct tsk))
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_cost tsk - task_rtct tsk <= R
by apply leq_trans with (task_cost tsk); [lia|].
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

R - (task_cost tsk - task_rtct tsk) + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
A: nat
IN: is_in_concrete_search_space A
F: nat
FIX: \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F
NEQ: F <= R
R_GE_TC: task_cost tsk <= R

task_cost tsk - task_rtct tsk <= R
by apply leq_trans with (task_cost tsk); [lia| ]. Qed. (** Lemma [soln_abstract_response_time_recurrence] is shown in Listing 3 in the paper. *) End ResponseTimeBoundRestated. (** ** H. Soundness of the Response-Time Bound *) (** Finally, we are in a position to establish the soundness of the claimed response-time bound [R] by applying the main general aRTA theorem [uniprocessor_response_time_bound]. *)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_cost js <= service sched js (job_arrival js + R)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_cost js <= service sched js (job_arrival js + R)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk ?L
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
job_interference_is_bounded_by arr_seq sched tsk ?interference_bound_function (relative_arrival_time_of_job_is_A sched)
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : nat, is_in_search_space ?L ?interference_bound_function A -> exists F : nat, task_rtct tsk + ?interference_bound_function A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
exact: abstractly_work_conserving.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk ?L
exact: busy_windows_are_bounded.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_interference_is_bounded_by arr_seq sched tsk ?interference_bound_function (relative_arrival_time_of_job_is_A sched)
exact: IBF_correct.
Task: TaskType
H: TaskCost Task
H0: MaxArrivals Task
H1: TaskRunToCompletionThreshold Task
Job: JobType
H2: JobTask Job Task
H3: JobArrival Job
H4: JobCost Job
H5: JobPreemptable Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
sched: schedule (ideal.processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_respects_policy_at_preemption_point: respects_JLFP_policy_at_preemption_point arr_seq sched (FIFO Job)
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_request_bound_function ts L
busy_windows_are_bounded_by:= [eta busy_intervals_are_bounded_by arr_seq sched tsk]: nat -> Prop
IBF:= fun A : duration => fun=> \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) - task_cost tsk: duration -> duration -> nat
bound_on_hep_workload:= @fifo_ahep_bound.bound_on_hep_workload: forall (Task : TaskType) (H : TaskCost Task) (H0 : MaxArrivals Task) (Job : JobType) (H1 : JobTask Job Task) (H2 : JobCost Job) (H3 : JobArrival Job) (PState : ProcessorState Job), uniprocessor_model PState -> unit_supply_proc_model PState -> forall arr_seq : arrival_sequence Job, valid_arrival_sequence arr_seq -> arrivals_have_valid_job_costs arr_seq -> forall ts : seq Task, all_jobs_from_taskset arr_seq ts -> taskset_respects_max_arrivals arr_seq ts -> valid_taskset_arrival_curve ts max_arrivals -> forall tsk : Task, tsk \in ts -> forall sched : schedule PState, jobs_must_arrive_to_execute sched -> completed_jobs_dont_execute sched -> forall j : Job, job_of_task tsk j -> arrives_in arr_seq j -> job_cost_positive j -> forall t1 t2 : instant, busy_interval arr_seq sched j t1 t2 -> forall Δ : instant, t1 + Δ < t2 -> cumulative_another_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= \sum_(tsko <- ts) task_request_bound_function tsko ... - task_cost tsk
is_in_abstract_search_space:= [eta is_in_search_space L IBF]: nat -> Prop
R: duration
H_R_max: forall A : duration, is_in_concrete_search_space A -> exists F : nat, \sum_(tsko <- ts) task_request_bound_function tsko (A + 1) <= A + F /\ F <= R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : nat, is_in_search_space L IBF A -> exists F : nat, task_rtct tsk + IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
exact: soln_abstract_response_time_recurrence. Qed. (** The preceding theorem [uniprocessor_response_time_bound_FIFO] corresponds to Theorem 2 in the paper. The correspondence becomes clearer when referring to the definition of [task_response_time_bound], and then in turn to the definitions of [job_of_task] and [job_response_time_bound]. *) End AbstractRTAforFIFOwithArrivalCurves.