Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.abstract.ideal.iw_instantiation. Require Export prosa.analysis.facts.busy_interval.existence. Require Export prosa.analysis.abstract.ideal.abstract_seq_rta. Require Export prosa.analysis.facts.model.task_cost. (** * Abstract RTA for FP-schedulers with Bounded Priority Inversion *) (** In this module we instantiate the Abstract Response-Time analysis (aRTA) to FP-schedulers for ideal uni-processor model of real-time tasks with arbitrary arrival models. *) (** Given FP priority policy and an ideal uni-processor scheduler model, we can explicitly specify [interference], [interfering_workload], and [interference_bound_function]. In this settings, we can define natural notions of service, workload, busy interval, etc. The important feature of this instantiation is that we can induce the meaningful notion of priority inversion. However, we do not specify the exact cause of priority inversion (as there may be different reasons for this, like execution of a non-preemptive segment or blocking due to resource locking). We only assume that that a priority inversion is bounded. *) Section AbstractRTAforFPwithArrivalCurves. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskRunToCompletionThreshold Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context {Arrival : JobArrival Job}. Context {Cost : JobCost Job}. Context `{JobPreemptable Job}. (** Consider an FP policy that indicates a higher-or-equal priority relation, and assume that the relation is reflexive. Note that we do not relate the FP policy with the scheduler. However, we define functions for Interference and Interfering Workload that actively use the concept of priorities. We require the FP policy to be reflexive, so a job cannot cause lower-priority interference (i.e. priority inversion) to itself. *) Context {FP : FP_policy Task}. Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP. (** Consider any arrival sequence with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** Next, consider any ideal uni-processor schedule of this arrival sequence, ... *) Variable sched : schedule (ideal.processor_state Job). (** ... allow for any work-bearing notion of job readiness, ... *) Context `{!JobReady Job (ideal.processor_state Job)}. Hypothesis H_job_ready : work_bearing_readiness arr_seq sched. (** ... and assume that the schedule is valid. *) Hypothesis H_sched_valid : valid_schedule sched arr_seq. (** ** Instantiation of Interference *) (** We say that job [j] incurs interference at time [t] iff it cannot execute due to a higher-or-equal-priority job being scheduled, or if it incurs a priority inversion. *) #[local] Instance ideal_jlfp_interference : Interference Job := ideal_jlfp_interference arr_seq sched. (** ** Instantiation of Interfering Workload *) (** The interfering workload, in turn, is defined as the sum of the priority inversion function and interfering workload of jobs with higher or equal priority. *) #[local] Instance ideal_jlfp_interfering_workload : InterferingWorkload Job := ideal_jlfp_interfering_workload arr_seq sched. (** Note that we differentiate between abstract and classical notions of work conserving schedule. *) Let work_conserving_ab := definitions.work_conserving arr_seq sched. Let work_conserving_cl := work_conserving.work_conserving arr_seq sched. (** We assume that the schedule is a work-conserving schedule in the _classical_ sense, and later prove that the hypothesis about abstract work-conservation also holds. *) Hypothesis H_work_conserving : work_conserving_cl. (** Assume we have sequential tasks, i.e, jobs from the same task execute in the order of their arrival. *) Hypothesis H_sequential_tasks : sequential_tasks arr_seq sched. (** Assume that a job cost cannot be larger than a task cost. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** Consider an arbitrary task set [ts]. *) Variable ts : list Task. (** Next, we assume that all jobs come from the task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval [delta = 0]. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Let [tsk] be any task in ts that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Consider a valid preemption model... *) Hypothesis H_valid_preemption_model : valid_preemption_model arr_seq sched. (** ...and a valid task run-to-completion threshold function. That is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *) Hypothesis H_valid_run_to_completion_threshold : valid_task_run_to_completion_threshold arr_seq tsk. (** For clarity, let's define some local names. *) Let job_pending_at := pending sched. Let job_scheduled_at := scheduled_at sched. Let job_completed_by := completed_by sched. Let job_backlogged_at := backlogged sched. Let response_time_bounded_by := task_response_time_bound arr_seq sched. (** We introduce [task_rbf] as an abbreviation of the task request bound function, which is defined as [task_cost(tsk) × max_arrivals(tsk,Δ)]. *) Let task_rbf := task_request_bound_function tsk. (** Using the sum of individual request bound functions, we define the request bound function of all tasks with higher-or-equal priority (with respect to [tsk]). *) Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk. (** Similarly, we define the request bound function of all tasks other than [tsk] with higher-or-equal priority (with respect to [tsk]). *) Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk. (** Assume that there exists a constant [priority_inversion_bound] that bounds the length of any priority inversion experienced by any job of [tsk]. Since we analyze only task [tsk], we ignore the lengths of priority inversions incurred by any other tasks. *) Variable priority_inversion_bound : duration. Hypothesis H_priority_inversion_is_bounded : priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound). (** Let [L] be any positive fixed point of the busy interval recurrence. *) Variable L : duration. Hypothesis H_L_positive : L > 0. Hypothesis H_fixed_point : L = priority_inversion_bound + total_hep_rbf L. (** To reduce the time complexity of the analysis, recall the notion of search space. Intuitively, this corresponds to all "interesting" arrival offsets that the job under analysis might have with regard to the beginning of its busy-window. *) Definition is_in_search_space A := (A < L) && (task_rbf A != task_rbf (A + ε)). (** Let [R] be a value that upper-bounds the solution of each response-time recurrence, i.e., for any relative arrival time [A] in the search space, there exists a corresponding solution [F] such that [R >= F + (task cost - task lock-in service)]. *) Variable R : duration. Hypothesis H_R_is_maximum : forall (A : duration), is_in_search_space A -> exists (F : duration), A + F >= priority_inversion_bound + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) /\ R >= F + (task_cost tsk - task_rtct tsk). (** Finally, we define the interference bound function ([task_IBF]). [task_IBF] bounds the interference if tasks are sequential. Since tasks are sequential, we exclude interference from other jobs of the same task. For FP, we define [task_IBF] as the sum of the priority interference bound and the higher-or-equal-priority workload. *) Let task_IBF (R : duration) := priority_inversion_bound + total_ohep_rbf R. (** ** Filling Out Hypotheses Of Abstract RTA Theorem *) (** In this section we prove that all preconditions necessary to use the abstract theorem are satisfied. *) Section FillingOutHypothesesOfAbstractRTATheorem. (** Recall that [L] is assumed to be a fixed point of the busy interval recurrence. Thanks to this fact, we can prove that every busy interval (according to the concrete definition) is bounded. In addition, we know that the conventional concept of busy interval and the one obtained from the abstract definition (with the interference and interfering workload) coincide. Thus, it follows that any busy interval (in the abstract sense) is bounded. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
forall t : nat, priority_inversion_bound + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

exists t1 t2 : nat, t1 <= job_arrival j < t2 /\ t2 <= t1 + L /\ busy_interval sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
BI: classical.busy_interval arr_seq sched j t1 t2

busy_interval sched j t1 t2
by eapply instantiated_busy_interval_equivalent_busy_interval.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

forall t : nat, priority_inversion_bound + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

forall t : nat, priority_inversion_bound + workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t: nat

workload_of_higher_or_equal_priority_jobs j (arrivals_between arr_seq t (t + L)) <= total_hep_rbf L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t: nat

\sum_(j0 <- arrivals_between arr_seq t (t + L) | hep_task (job_task j0) (job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t: nat

\sum_(j <- arrivals_between arr_seq t (t + L) | hep_task (job_task j) tsk) job_cost j <= \sum_(tsk_other <- ts | hep_task tsk_other tsk) task_request_bound_function tsk_other L
exact: sum_of_jobs_le_sum_rbf. } Qed. (** Next, we prove that [task_IBF] is indeed an interference bound. Recall that in module abstract_seq_RTA hypothesis [task_interference_is_bounded_by] expects to receive a function that maps some task [tsk], the relative arrival time of a job [j] of task [tsk], and the length of the interval to the maximum amount of interference. However, in this module we analyze only one task -- [tsk], therefore it is “hard-coded” inside the interference bound function [task_IBF]. Moreover, in case of a model with fixed priorities, interference that some job [j] incurs from higher-or-equal priority jobs does not depend on the relative arrival time of job [j]. Therefore, in order for the [task_IBF] signature to match the required signature in module [abstract_seq_RTA], we wrap the [task_IBF] function in a function that accepts, but simply ignores, the task and the relative arrival time. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

task_interference_is_bounded_by arr_seq sched tsk (fun=> [eta task_IBF])
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

task_interference_is_bounded_by arr_seq sched tsk (fun=> [eta task_IBF])
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
ZERO: job_cost j = 0

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
ZERO: job_cost j = 0

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF Δ
by exfalso; rewrite /completed_by ZERO in NCOMPL.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumul_cond_interference (nonself arr_seq sched) j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumul_task_interference arr_seq sched j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= task_IBF Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= priority_inversion_bound
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_priority_inversion arr_seq sched j t1 (t1 + Δ) <= cumulative_priority_inversion arr_seq sched j t1 t2
by rewrite [X in _ <= X](@big_cat_nat _ _ _ (t1 + Δ)) //= leq_addr.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + Δ) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

service_of_other_task_hep_jobs arr_seq sched j t1 (t1 + Δ) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

service_of_other_task_hep_jobs arr_seq sched j t1 (t1 + Δ) <= ?Goal
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
?Goal <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

service_of_other_task_hep_jobs arr_seq sched j t1 (t1 + Δ) <= ?Goal
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

completed_jobs_dont_execute sched
by apply (valid_schedule_implies_completed_jobs_dont_execute sched arr_seq).
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ)) <= total_ohep_rbf Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | another_task_hep_job j0 j) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | hep_task (job_task j0) (job_task j) && (job_task j0 != job_task j)) job_cost j0 <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(tsk_other <- ts | hep_task tsk_other tsk && (tsk_other != tsk)) task_request_bound_function tsk_other Δ
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
t1, t2: instant
Δ: nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
BUSY: busy_interval sched j t1 t2
LT: t1 + Δ < t2
NCOMPL: ~~ completed_by sched j (t1 + Δ)
A: nat
OFF: relative_arrival_time_of_job_is_A sched j A
POS: 0 < job_cost j
pred_task:= fun tsk_other : Task => hep_task tsk_other tsk && (tsk_other != tsk): Task -> bool

\sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | pred_task (job_task i)) job_cost i <= \sum_(i <- ts | pred_task i) (task_request_bound_function^~ Δ) i
by apply: sum_of_jobs_le_sum_rbf; eauto. } } Qed. (** Finally, we show that there exists a solution for the response-time recurrence. *) Section SolutionOfResponseTimeRecurrenceExists. (** To rule out pathological cases with the concrete search space, we assume that the task cost is positive and the arrival curve is non-pathological. *) Hypothesis H_task_cost_pos : 0 < task_cost tsk. Hypothesis H_arrival_curve_pos : 0 < max_arrivals tsk ε. (** Given any job [j] of task [tsk] that arrives exactly [A] units after the beginning of the busy interval, the bound of the total interference incurred by [j] within an interval of length [Δ] is equal to [task_rbf (A + ε) - task_cost tsk + task_IBF Δ]. *) Let total_interference_bound A Δ := task_rbf (A + ε) - task_cost tsk + task_IBF Δ. (** Next, consider any [A] from the search space (in the abstract sense). *) Variable A : duration. Hypothesis H_A_is_in_abstract_search_space : search_space.is_in_search_space L total_interference_bound A. (** We prove that [A] is also in the concrete search space. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x
is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

is_in_search_space 0
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

task_rbf 0 != task_rbf (0 + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

task_rbf 0 < task_rbf (0 + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

0 < task_rbf (0 + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
INSP: A = 0

task_cost tsk <= task_request_bound_function tsk 1
exact: task_rbf_1_ge_task_cost.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x

task_rbf A != task_rbf (A + 1)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound (A - 1) x <> total_interference_bound A x
EQ: task_rbf A = task_rbf (A + 1)

False
by apply INSP2; rewrite /total_interference_bound subn1 addn1 prednK //. Qed. (** Then, there exists a solution for the response-time recurrence (in the abstract sense). *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A

exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
FIX: is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
FIX: exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R

exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
F: duration
FIX: priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

exists F : duration, task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
F: duration
FIX: priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= A + F
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
H_task_cost_pos: 0 < task_cost tsk
H_arrival_curve_pos: 0 < max_arrivals tsk 1
total_interference_bound:= fun (A : nat) (Δ : duration) => task_rbf (A + 1) - task_cost tsk + task_IBF Δ: nat -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space L total_interference_bound A
F: duration
FIX: priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + task_IBF (A + F) <= priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F)
by rewrite addnA [_ + priority_inversion_bound]addnC -!addnA. Qed. End SolutionOfResponseTimeRecurrenceExists. End FillingOutHypothesesOfAbstractRTATheorem. (** ** Final Theorem *) (** Based on the properties established above, we apply the abstract analysis framework to infer that [R] is a response-time bound for [tsk]. *)
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat

response_time_bounded_by tsk R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
by rewrite /job_response_time_bound /completed_by ZERO.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk ?L
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk ?task_IBF
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space ?L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + ?task_IBF A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + ?task_IBF A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
exact: instantiated_i_and_w_are_coherent_with_schedule.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk ?L
exact: instantiated_busy_intervals_are_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

task_interference_is_bounded_by arr_seq sched tsk ?task_IBF
exact: instantiated_task_interference_is_bounded.
Task: TaskType
H: TaskCost Task
H0: TaskRunToCompletionThreshold Task
Job: JobType
H1: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H2: JobPreemptable Job
FP: FP_policy Task
H_priority_is_reflexive: reflexive_task_priorities FP
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
JobReady0: JobReady Job (ideal.processor_state Job)
H_job_ready: work_bearing_readiness arr_seq sched
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_sequential_tasks: sequential_tasks arr_seq sched
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H3: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
job_pending_at:= pending sched: Job -> instant -> bool
job_scheduled_at:= scheduled_at sched: Job -> instant -> bool
job_completed_by:= completed_by sched: Job -> instant -> bool
job_backlogged_at:= backlogged sched: Job -> instant -> bool
response_time_bounded_by:= task_response_time_bound arr_seq sched: Task -> duration -> Prop
task_rbf:= task_request_bound_function tsk: duration -> nat
total_hep_rbf:= total_hep_request_bound_function_FP ts tsk: duration -> nat
total_ohep_rbf:= total_ohep_request_bound_function_FP ts tsk: duration -> nat
priority_inversion_bound: duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk (constant priority_inversion_bound)
L: duration
H_L_positive: 0 < L
H_fixed_point: L = priority_inversion_bound + total_hep_rbf L
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound + (task_rbf (A + 1) - (task_cost tsk - task_rtct tsk)) + total_ohep_rbf (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
task_IBF:= fun R : duration => priority_inversion_bound + total_ohep_rbf R: duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : duration, search_space.is_in_search_space L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + (fun=> [eta task_IBF]) A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + (fun=> [eta task_IBF]) A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
exact: correct_search_space. Qed. End AbstractRTAforFPwithArrivalCurves.