Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.analysis.facts.model.restricted_supply.schedule. Require Export prosa.analysis.facts.preemption.rtc_threshold.limited. Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound. Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.edf. Require Export prosa.analysis.abstract.restricted_supply.search_space.edf. Require Export prosa.analysis.facts.model.task_cost. Require Export prosa.analysis.facts.priority.edf. Require Export prosa.analysis.facts.blocking_bound.edf. Require Export prosa.analysis.facts.workload.edf_athep_bound. Require Export prosa.analysis.definitions.sbf.busy. (** * RTA for EDF Scheduling with Fixed Preemption Points on Restricted-Supply Uniprocessors *) (** In the following, we derive a response-time analysis for EDF schedulers, assuming a workload of sporadic real-time tasks characterized by arbitrary arrival curves executing upon a uniprocessor with arbitrary supply restrictions. To this end, we instantiate the sequential variant of _abstract Restricted-Supply Response-Time Analysis_ (aRSA) as provided in the [prosa.analysis.abstract.restricted_supply] module. *) Section RTAforLimitedPreemptiveEDFModelwithArrivalCurves. (** ** Defining the System Model *) (** Before any formal claims can be stated, an initial setup is needed to define the system model under consideration. To this end, we next introduce and define the following notions using Prosa's standard definitions and behavioral semantics: - processor model, - tasks, jobs, and their parameters, - the sequence of job arrivals, - worst-case execution time (WCET) and the absence of self-suspensions, - the set of tasks under analysis, - the task under analysis, - an arbitrary schedule of the task set, and finally, - a supply-bound function. *) (** *** Processor Model *) (** Consider a restricted-supply uniprocessor model. *) #[local] Existing Instance rs_processor_state. (** *** Tasks and Jobs *) (** Consider any type of tasks, each characterized by a WCET [task_cost], relative deadline [task_deadline], an arrival curve [max_arrivals], and a predicate indicating task's preemption points [task_preemption_points], ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskDeadline Task}. Context `{MaxArrivals Task}. Context `{TaskPreemptionPoints Task}. (** ... and any type of jobs associated with these tasks, where each job has a task [job_task], a cost [job_cost], an arrival time [job_arrival], and a predicate indicating job's preemption points [job_preemptive_points]. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context `{JobCost Job}. Context `{JobArrival Job}. Context `{JobPreemptionPoints Job}. (** We assume that jobs are limited-preemptive. *) #[local] Existing Instance limited_preemptive_job_model. (** *** The Job Arrival Sequence *) (** Consider any arrival sequence [arr_seq] with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** *** Absence of Self-Suspensions and WCET Compliance *) (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** We further require that a job's cost cannot exceed its task's stated WCET. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** *** The Task Set *) (** We consider an arbitrary task set [ts] ... *) Variable ts : seq Task. (** ... and assume that all jobs stem from tasks in this task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** We assume a model with fixed preemption points. I.e., each task is divided into a number of non-preemptive segments by inserting statically predefined preemption points. *) Hypothesis H_valid_model_with_fixed_preemption_points : valid_fixed_preemption_points_model arr_seq ts. (** We assume that [max_arrivals] is a family of valid arrival curves that constrains the arrival sequence [arr_seq], i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and ... *) Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** ... (2) a monotonic function that equals 0 for the empty interval [delta = 0]. *) Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. (** *** The Task Under Analysis *) (** Let [tsk] be any task in [ts] that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** *** The Schedule *) (** Consider any arbitrary, work-conserving, valid restricted-supply uni-processor schedule with limited preemptions of the given arrival sequence [arr_seq] (and hence the given task set [ts]). *) Variable sched : schedule (rs_processor_state Job). Hypothesis H_valid_schedule : valid_schedule sched arr_seq. Hypothesis H_work_conserving : work_conserving arr_seq sched. Hypothesis H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched. (** Assume that the schedule respects the EDF policy. *) Hypothesis H_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job). (** *** Supply-Bound Function *) (** Assume the minimum amount of supply that any job of task [tsk] receives is defined by a monotone unit-supply-bound function [SBF]. *) Context {SBF : SupplyBoundFunction}. Hypothesis H_SBF_monotone : sbf_is_monotone SBF. Hypothesis H_unit_SBF : unit_supply_bound_function SBF. (** We assume that [SBF] properly characterizes all busy intervals (w.r.t. task [tsk]) in [sched]. That is, (1) [SBF 0 = 0] and (2) for any duration [Δ], at least [SBF Δ] supply is available in any busy-interval prefix of length [Δ]. *) Hypothesis H_valid_SBF : valid_busy_sbf arr_seq sched tsk SBF. (** ** Workload Abbreviation *) (** Let's denote the relative deadline of a task as [D]. *) Let D tsk := task_deadline tsk. (** We introduce [task_rbf] as an abbreviation for the task request bound function of task [tsk]. *) Let task_rbf := task_request_bound_function tsk. (** ** Length of Busy Interval *) (** The next step is to establish a bound on the maximum busy-window length, which aRSA requires to be given. *) (** To this end, let [L] be any positive constant such that ... *) Variable L : duration. Hypothesis H_L_positive : 0 < L. (** ... [L] satisfies a fixed-point recurrence for the busy-interval-length bound (i.e., [total_RBF ts L <= SBF L] ... *) Hypothesis H_fixed_point : total_request_bound_function ts L <= SBF L. (** ... and [SBF L] bounds [longest_busy_interval_with_pi ts tsk]. *) Hypothesis H_L_bounds_bi_with_pi : longest_busy_interval_with_pi ts tsk <= SBF L. (** ** Response-Time Bound *) (** Having established all necessary preliminaries, it is finally time to state the claimed response-time bound [R]. A value [R] is a response-time bound if, for any given offset [A] in the search space, the response-time bound recurrence has a solution [F] not exceeding [R]. *) Definition rta_recurrence_solution R := forall (A : duration), is_in_search_space ts tsk L A -> exists (F : duration), A <= F <= A + R /\ blocking_bound ts tsk A + (task_rbf (A + ε) - (task_last_nonpr_segment tsk - ε)) + bound_on_athep_workload ts tsk A F <= SBF F /\ SBF F + (task_last_nonpr_segment tsk - ε) <= SBF (A + R). (** Finally, using the sequential variant of abstract restricted-supply analysis, we establish that any such [R] is a sound response-time bound for the concrete model of EDF scheduling with limited preemptions with arbitrary supply restrictions. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L

forall R : duration, rta_recurrence_solution R -> task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L

forall R : duration, rta_recurrence_solution R -> task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

valid_preemption_model arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

valid_preemption_model arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

valid_limited_preemptions_job_model arr_seq
by apply H_valid_model_with_fixed_preemption_points.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

definitions.work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
busy_sbf.valid_busy_sbf arr_seq sched tsk SBF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
task_intra_interference_is_bounded_by arr_seq sched tsk ?task_intra_IBF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
forall A : duration, search_space.is_in_search_space L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + ?task_intra_IBF A0 Δ) A -> exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + ?task_intra_IBF A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

definitions.work_conserving arr_seq sched
exact: instantiated_i_and_w_are_coherent_with_schedule.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

sequential_tasks arr_seq sched
exact: EDF_implies_sequential_tasks.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

definitions.work_conserving arr_seq sched
by apply: instantiated_i_and_w_are_coherent_with_schedule.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

busy_sbf.valid_busy_sbf arr_seq sched tsk SBF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

forall (j : Job) (t1 t2 : instant), arrives_in arr_seq j -> job_of_task tsk j /\ definitions.busy_interval_prefix sched j t1 t2 -> (fun (j0 : Job) (t3 t4 : instant) => job_of_task tsk j0 /\ busy_interval_prefix arr_seq sched j0 t3 t4) j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
_j_: Job
_t1_, _t2_: instant
_Hyp_: arrives_in arr_seq _j_
_a_: job_of_task tsk _j_
_b_: definitions.busy_interval_prefix sched _j_ _t1_ _t2_

busy_interval_prefix arr_seq sched _j_ _t1_ _t2_
by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

task_intra_interference_is_bounded_by arr_seq sched tsk ?task_intra_IBF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

athep_workload_is_bounded arr_seq sched tsk ?Goal2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
service_inversion_is_bounded_by arr_seq sched tsk ?Goal0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

athep_workload_is_bounded arr_seq sched tsk ?Goal2
by (apply: bound_on_athep_workload_is_valid; try apply H_fixed_point) => //.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

service_inversion_is_bounded_by arr_seq sched tsk ?Goal0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
jo: Job
t1, t2: instant
ARRo: arrives_in arr_seq jo
TSKo: job_of_task tsk jo
BUSYo: busy_interval_prefix arr_seq sched jo t1 t2

max_lp_nonpreemptive_segment arr_seq jo t1 <= ?Goal0 (job_arrival jo - t1)
by apply: nonpreemptive_segments_bounded_by_blocking => //.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched

forall A : duration, search_space.is_in_search_space L (fun A0 Δ : duration => task_request_bound_function tsk (A0 + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A0 Δ) A -> exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A

exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A

is_in_search_space ts tsk L A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
forall x : duration, A <= x <= A + R /\ blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A x <= SBF x /\ SBF x + (task_last_nonpr_segment tsk - 1) <= SBF (A + R) -> exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A

is_in_search_space ts tsk L A
by apply: search_space_sub => //; apply: search_space_switch_IBF.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A

forall x : duration, A <= x <= A + R /\ blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A x <= SBF x /\ SBF x + (task_last_nonpr_segment tsk - 1) <= SBF (A + R) -> exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

exists F : duration, F <= A + R /\ task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A F <= SBF F /\ SBF F + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

FF <= A + R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)
task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A FF <= SBF FF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)
SBF FF + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

FF <= A + R
lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

task_request_bound_function tsk (A + 1) - (task_cost tsk - task_rtct tsk) + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A FF <= SBF FF
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF -> task_rbf (A + 1) - (task_cost tsk - task_rtct tsk) + (blocking_bound ts tsk A + bound_on_athep_workload ts tsk A FF) <= SBF FF
by erewrite last_segment_eq_cost_minus_rtct => //; lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: MaxArrivals Task
H2: TaskPreemptionPoints Task
Job: JobType
H3: JobTask Job Task
H4: JobCost Job
H5: JobArrival Job
H6: JobPreemptionPoints Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H_valid_model_with_fixed_preemption_points: valid_fixed_preemption_points_model arr_seq ts
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
tsk: Task
H_tsk_in_ts: tsk \in ts
sched: schedule (rs_processor_state Job)
H_valid_schedule: valid_schedule sched arr_seq
H_work_conserving: work_conserving arr_seq sched
H_schedule_with_limited_preemptions: schedule_respects_preemption_model arr_seq sched
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched (EDF Job)
SBF: SupplyBoundFunction
H_SBF_monotone: sbf_is_monotone SBF
H_unit_SBF: unit_supply_bound_function SBF
H_valid_SBF: valid_busy_sbf arr_seq sched tsk SBF
D:= [eta task_deadline]: Task -> duration
task_rbf:= task_request_bound_function tsk: duration -> nat
L: duration
H_L_positive: 0 < L
H_fixed_point: total_request_bound_function ts L <= SBF L
H_L_bounds_bi_with_pi: longest_busy_interval_with_pi ts tsk <= SBF L
R: duration
SOL: rta_recurrence_solution R
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
VAL1: valid_preemption_model arr_seq sched
READ: work_bearing_readiness arr_seq sched
A: duration
SP: search_space.is_in_search_space L (fun A Δ : duration => task_request_bound_function tsk (A + 1) - task_cost tsk + task_intra_IBF (blocking_bound ts tsk) (bound_on_athep_workload ts tsk) A Δ) A
FF: duration
EQ1: A <= FF <= A + R
EQ2: blocking_bound ts tsk A + (task_rbf (A + 1) - (task_last_nonpr_segment tsk - 1)) + bound_on_athep_workload ts tsk A FF <= SBF FF
EQ3: SBF FF + (task_last_nonpr_segment tsk - 1) <= SBF (A + R)

SBF FF + (task_cost tsk - task_rtct tsk) <= SBF (A + R)
by erewrite last_segment_eq_cost_minus_rtct. Qed. End RTAforLimitedPreemptiveEDFModelwithArrivalCurves.