Built with Alectryon, running Coq+SerAPI v8.20.0+0.20.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
[Loading ML file ssrmatching_plugin.cmxs (using legacy method) ... done]
[Loading ML file ssreflect_plugin.cmxs (using legacy method) ... done]
[Loading ML file ring_plugin.cmxs (using legacy method) ... done]
Serlib plugin: coq-elpi.elpi is not available: serlib support is missing. Incremental checking for commands in this plugin will be impacted.
[Loading ML file coq-elpi.elpi ... done]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing,default]
Require Export prosa.util.rel.
[Loading ML file zify_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_core_plugin.cmxs (using legacy method) ... done]
[Loading ML file micromega_plugin.cmxs (using legacy method) ... done]
[Loading ML file btauto_plugin.cmxs (using legacy method) ... done]
Require Export prosa.util.minmax. (** * Fixpoint Search *) (** This module provides some utilities for finding positive fixpoints of monotonic functions. *) (** ** Least Positive Fixpoint *) (** Finds the least fixpoint of a monotonic function, between a start point [s] and a horizon [h], given an amount of [fuel]. *) Fixpoint find_fixpoint_from (f : nat -> nat) (x h fuel: nat): option nat := if fuel is S fuel' then if f x == x then Some x else if (f x) <= h then find_fixpoint_from f (f x) h fuel' else None else None. (** Given a horizon [h] and a monotonic function [f], find the least positive fixpoint of [f] no larger than [h], if any. *) Definition find_fixpoint (f : nat -> nat) (h : nat) : option nat := find_fixpoint_from f 1 h h. (** In the following, we show that the fixpoint search works as expected. *) Section FixpointSearch. (** Consider any function [f] ... *) Variable f : nat -> nat. (** ... and any given horizon. *) Variable h : nat. (** We show that the result of [find_fixpoint_from] is indeed a fixpoint. *)
f: nat -> nat
h: nat

forall s x fuel : nat, find_fixpoint_from f s h fuel = Some x -> x = f x
f: nat -> nat
h: nat

forall s x fuel : nat, find_fixpoint_from f s h fuel = Some x -> x = f x
f: nat -> nat
h, s, x, fuel: nat

find_fixpoint_from f s h fuel = Some x -> x = f x
f: nat -> nat
h, x, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some x -> x = f x
s': nat

find_fixpoint_from f s' h fuel'.+1 = Some x -> x = f x
f: nat -> nat
h, x, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some x -> x = f x
s': nat

(if f s' == s' then Some s' else if f s' <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s') h fuel' else None) = Some x -> x = f x
f: nat -> nat
h, x, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some x -> x = f x
s': nat

(if f s' <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s') h fuel' else None) = Some x -> x = f x
f: nat -> nat
h, x, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some x -> x = f x
s': nat

(if f s' <= h then find_fixpoint_from f (f s') h fuel' else None) = Some x -> x = f x
by case: (f s' <= h). Qed. (** Using the above fact, we observe that the result of [find_fixpoint] is a fixpoint. *)
f: nat -> nat
h: nat

forall x : nat, find_fixpoint f h = Some x -> x = f x
f: nat -> nat
h: nat

forall x : nat, find_fixpoint f h = Some x -> x = f x
by move=> x FOUND; apply: ffpf_finds_fixpoint FOUND. Qed. (** Next, we establish properties that rely on the monotonic properties of the function. *) Section MonotonicFunction. (** Suppose [f] is monotonically increasing ... *) Hypothesis H_f_mono: monotone leq f. (** ... and not zero at 1. *) Hypothesis F1: f 1 > 0. (** Assuming the function is monotonic, there is no fixpoint between [a] and [c], if [f a = c]. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall a c : nat, c = f a -> forall b : nat, a <= b < c -> b != f b
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall a c : nat, c = f a -> forall b : nat, a <= b < c -> b != f b
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
a, c: nat
EQ: c = f a
b: nat
LEQ: a <= b
LT: b < c

b != f b
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
a, c: nat
EQ: c = f a
b: nat
LEQ: a <= b
LT: b < c
MONO: f a <= f b

b != f b
by lia. Qed. (** It follows that [find_fixpoint_from] finds the least fixpoint larger than [s]. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall y s fuel : nat, find_fixpoint_from f s h fuel = Some y -> forall x : nat, s <= x < y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall y s fuel : nat, find_fixpoint_from f s h fuel = Some y -> forall x : nat, s <= x < y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, s, fuel: nat

find_fixpoint_from f s h fuel = Some y -> forall x : nat, s <= x < y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s: nat
FFP: find_fixpoint_from f s h fuel'.+1 = Some y
x: nat
LEQx: s <= x
LT: x < y

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y

(if f s == s then Some s else if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) = Some y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y

f s != s -> (if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) = Some y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s

(if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) = Some y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h

(fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' = Some y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
fsLEQs: f s <= x

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
sLTfs: x < f s
x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
fsLEQs: f s <= x

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
fsLEQs: f s <= x

f s <= x < y
by apply /andP; split.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
sLTfs: x < f s

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
sLTfs: x < f s

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
y, fuel': nat
IH: forall s : nat, find_fixpoint_from f s h fuel' = Some y -> forall x : nat, s <= x < y -> x != f x
s, x: nat
LEQx: s <= x
LT: x < y
EQ: f s != s
LEQh: f s <= h
FFP: find_fixpoint_from f (f s) h fuel' = Some y
sLTfs: x < f s

s <= x < f s
by apply /andP; split. } Qed. (** Hence [find_fixpoint] finds the least positive fixpoint of [f]. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall x y : nat, 0 < x < y -> find_fixpoint f h = Some y -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall x y : nat, 0 < x < y -> find_fixpoint f h = Some y -> x != f x
by move=> x y LT FFP; apply: ffpf_finds_least_fixpoint; eauto. Qed. (** Furthermore, we observe that [find_fixpoint_from] finds positive fixpoints when provided with a positive starting point [s]. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall s fuel x : nat, Some x = find_fixpoint_from f s h fuel -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall s fuel x : nat, Some x = find_fixpoint_from f s h fuel -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
s, fuel, x: nat

Some x = find_fixpoint_from f s h fuel -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
s, fuel, x: nat

Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat

Some x = (if f s == s then Some s else if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
SOME: Some x = Some s

0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
Some x = (if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
SOME: Some x = Some s

0 < s -> 0 < x
by move: SOME => []; lia.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s

Some x = (if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) -> 0 < s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
SOME: Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel'
GT: 0 < s

0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
SOME: Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel'
GT: 0 < s

0 < f s
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
SOME: Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel'
GT: 0 < s
0 < f s -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
SOME: Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel'
GT: 0 < s

0 < f s
by move: (H_f_mono 1 s GT) => MONO; lia.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x, fuel': nat
IH: forall s : nat, Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f s h fuel' -> 0 < s -> 0 < x
s: nat
NEQ: f s != s
SOME: Some x = (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel'
GT: 0 < s

0 < f s -> 0 < x
by apply (IH (f s)). Qed. (** Hence [finds_fixpoint] finds only positive fixpoints. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall x : nat, Some x = find_fixpoint f h -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall x : nat, Some x = find_fixpoint f h -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x: nat

Some x = find_fixpoint f h -> 0 < x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
x: nat
FIX: Some x = find_fixpoint_from f 1 h h

0 < x
by apply: ffpf_finds_positive_fixpoint; first apply FIX. Qed. (** If [find_fixpoint_from] finds no fixpoint between s and h, there is none. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall s fuel : nat, s <= f s -> h - s <= fuel -> find_fixpoint_from f s h fuel = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

forall s fuel : nat, s <= f s -> h - s <= fuel -> find_fixpoint_from f s h fuel = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
s, fuel: nat

s <= f s -> h - s <= fuel -> find_fixpoint_from f s h fuel = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1

find_fixpoint_from f s h fuel'.+1 = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1

(if f s == s then Some s else if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s

(if f s <= h then (fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' else None) = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
GTNh: h < f s

forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
(fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
GTNh: h < f s

forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
GTNh: h < f s
x: nat
SX: s <= x
LT: x < h

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
GTNh: h < f s
x: nat
SX: s <= x
LT: x < h

s <= x < f s
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
GTNh: h < f s
x: nat
SX: s <= x
LT: x < h

x < f s
by apply: ltn_trans LT GTNh.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s

(fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s

(fix find_fixpoint_from (f : nat -> nat) (x h fuel : nat) {struct fuel} : option nat := match fuel with | 0 => None | fuel'.+1 => if f x == x then Some x else if f x <= h then find_fixpoint_from f (f x) h fuel' else None end) f (f s) h fuel' = None -> forall x : nat, s <= x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: x < f s
x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x

h - f s <= fuel'
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x
f s <= x < h
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x

h - f s <= fuel'
by lia.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: f s <= x

f s <= x < h
by apply /andP; split.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: x < f s

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: x < f s

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
fuel': nat
IH: forall s : nat, s <= f s -> h - s <= fuel' -> find_fixpoint_from f s h fuel' = None -> forall x : nat, s <= x < h -> x != f x
s: nat
GEQ: s <= f s
FUEL: h - s <= fuel'.+1
F: f s != s
FFP: find_fixpoint_from f (f s) h fuel' = None
x: nat
SX: s <= x
XH: x < h
FSX: x < f s

s <= x < f s
by apply /andP; split. }} Qed. (** Hence, if [find_fixpoint] finds no positive fixpoint less than h, there is none. *)
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

find_fixpoint f h = None -> forall x : nat, 0 < x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1

find_fixpoint f h = None -> forall x : nat, 0 < x < h -> x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

x != f x
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

0 < f 1
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h
h - 1 <= h
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h
find_fixpoint_from f 1 h h = None
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h
0 < x < h
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

0 < f 1
by move: F1; case (f 1) => //.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

h - 1 <= h
by rewrite subn1; exact /leq_pred.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

find_fixpoint_from f 1 h h = None
by exact: FFP.
f: nat -> nat
h: nat
H_f_mono: monotone leq f
F1: 0 < f 1
FFP: find_fixpoint f h = None
x: nat
POS: 0 < x
LT: x < h

0 < x < h
by apply /andP; split. Qed. End MonotonicFunction. End FixpointSearch. (** ** Maximal Fixpoint across a Search Space *) (** Given a function taking two inputs and a search space for the first argument, [find_max_fixpoint_of_seq] finds the maximum fixpoint with regard to the second argument across the search space, but only if a fixpoint exists for each point in the search space. *) Definition find_max_fixpoint_of_seq (f : nat -> nat -> nat) (sp : seq nat) (h : nat) : option nat := let is_some opt := opt != None in let fixpoints := [seq find_fixpoint (f s) h | s <- sp] in let max := \max_(fp <- fixpoints | is_some fp) (odflt 0) fp in if all is_some fixpoints then Some max else None. (** We prove that the result of the [find_max_fixpoint_of_seq] is a fixpoint of the function for an element of the search space. *)

forall (f : nat -> nat -> nat) (sp : seq nat) (h x : nat), ~~ nilp sp -> find_max_fixpoint_of_seq f sp h = Some x -> exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x

forall (f : nat -> nat -> nat) (sp : seq nat) (h x : nat), ~~ nilp sp -> find_max_fixpoint_of_seq f sp h = Some x -> exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp

find_max_fixpoint_of_seq f sp h = Some x -> exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp

(if all (fun opt : option nat => opt != None) [seq find_fixpoint (f s) h | s <- sp] then Some (\max_(fp <- [seq find_fixpoint (f s) h | s <- sp] | fp != None) odflt 0 fp) else None) = Some x -> exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: (if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None) = Some x

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: (if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None) = Some x
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps

(if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None) = Some x -> exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: \max_(fp <- fps | fp != None) odflt 0 fp = x

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: \max_(fp <- fps | fp != None) odflt 0 fp = x
NN': ~~ nilp fps

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: \max_(fp <- fps | fp != None) odflt 0 fp = x
NN': ~~ nilp fps
w: option nat
IN: w \in fps
SOME: w != None
MAX: match w with | Some x' => x' | None => 0 end = \max_(x <- fps | x != None) match x with | Some x' => x' | None => 0 end

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: \max_(fp <- fps | fp != None) odflt 0 fp = x
NN': ~~ nilp fps
w: nat
IN: Some w \in fps

w = \max_(x <- fps | x != None) match x with | Some x' => x' | None => 0 end -> exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
NN': ~~ nilp fps
w: nat
IN: Some w \in fps
WX: w = x

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
NN': ~~ nilp fps
w: nat
WX: w = x
a: Datatypes_nat__canonical__eqtype_Equality
IN: a \in sp
FIX: Some x = find_fixpoint (f a) h

exists2 a : nat, a \in sp & x = f a x
f: nat -> nat -> nat
sp: seq nat
h, x: nat
NN: ~~ nilp sp
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
NN': ~~ nilp fps
w: nat
WX: w = x
a: Datatypes_nat__canonical__eqtype_Equality
IN: a \in sp
FIX: Some x = find_fixpoint (f a) h

x = f a x
by eapply ffp_finds_fixpoint, ssrfun.esym, FIX. Qed. (** Furthermore, we show that the result is the maximum of all fixpoints, with regard to the search space.*)

forall (f : nat -> nat -> nat) (sp : seq nat) (h s r : nat), Some r = find_max_fixpoint_of_seq f sp h -> s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r

forall (f : nat -> nat -> nat) (sp : seq nat) (h s r : nat), Some r = find_max_fixpoint_of_seq f sp h -> s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat

Some r = find_max_fixpoint_of_seq f sp h -> s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat

Some r = (if all (fun opt : option nat => opt != None) [seq find_fixpoint (f s) h | s <- sp] then Some (\max_(fp <- [seq find_fixpoint (f s) h | s <- sp] | fp != None) odflt 0 fp) else None) -> s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: Some r = (if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None)

s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: Some r = (if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps

s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps

Some r = (if all (fun opt : option nat => opt != None) fps then Some (\max_(fp <- fps | fp != None) odflt 0 fp) else None) -> s \in sp -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

Some (odflt 0 (find_fixpoint (f s) h)) = find_fixpoint (f s) h
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp
odflt 0 (find_fixpoint (f s) h) <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

Some (odflt 0 (find_fixpoint (f s) h)) = find_fixpoint (f s) h
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp
FFP: find_fixpoint (f s) h = None

False
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp
FFP: find_fixpoint (f s) h = None

find_fixpoint (f s) h != None
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp
FFP: find_fixpoint (f s) h = None

find_fixpoint (f s) h \in fps
by rewrite /fps; exact: map_f.
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

odflt 0 (find_fixpoint (f s) h) <= r
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

odflt 0 (find_fixpoint (f s) h) <= \max_(fp <- fps | fp != None) odflt 0 fp
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
ALL: all (fun opt : Datatypes_option__canonical__eqtype_Equality Datatypes_nat__canonical__eqtype_Equality => opt != None) fps
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp

find_fixpoint (f s) h \in fps
f: nat -> nat -> nat
sp: seq nat
h, s, r: nat
fps:= [seq find_fixpoint (f s) h | s <- sp]: seq (option nat)
H: r = \max_(fp <- fps | fp != None) odflt 0 fp
IN: s \in sp
find_fixpoint (f s) h \in fps
all: by rewrite /fps; exact: map_f. Qed. (** ** Search Space Defined by a Predicate *) Section PredicateSearchSpace. (** Consider a limit [L] ... *) Variable L : nat. (** ... and any predicate [P] on numbers. *) Variable P : pred nat. (** We create a derive predicate that defines the search space as all values less than [L] that satisfy [P]. *) Let is_in_search_space A := (A < L) && P A. (** This is used to create a corresponding sequence of points in the search space. *) Let sp := [seq s <- (iota 0 L) | P s]. (** Based on this conversion, we define a function to find the maximum of all fixpoints within the search space. *) Definition find_max_fixpoint (f : nat -> nat -> nat) (h : nat) := if (has P (iota 0 L)) then find_max_fixpoint_of_seq f sp h else None. (** The result of [find_max_fixpoint] is a fixpoint of the function [f] for a an element of the search space. *)
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat

forall (f : nat -> nat -> nat) (h x : nat), find_max_fixpoint f h = Some x -> exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat

forall (f : nat -> nat -> nat) (h x : nat), find_max_fixpoint f h = Some x -> exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x

exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x

~~ nilp sp
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x

~~ nilp sp
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat

find_max_fixpoint f h = Some x -> ~~ nilp sp
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat

(if 0 < count P (iota 0 L) then find_max_fixpoint_of_seq f [seq s <- iota 0 L | P s] h else None) = Some x -> count [eta P] (iota 0 L) != 0
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat

(if 0 < count P (iota 0 L) then find_max_fixpoint_of_seq f [seq x <- iota 0 L | P x] h else None) = Some x -> count P (iota 0 L) != 0
by case (count P (iota 0 L)) => //.
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
FP: exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x
exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

~~ nilp sp
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
find_max_fixpoint_of_seq f sp ?Goal0 = Some x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

~~ nilp sp
exact: NILP.
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp

find_max_fixpoint_of_seq f sp ?Goal0 = Some x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
NILP: ~~ nilp sp

find_max_fixpoint f h = Some x -> find_max_fixpoint_of_seq f sp ?Goal0 = Some x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
NILP: ~~ nilp sp

(if has P (iota 0 L) then find_max_fixpoint_of_seq f sp h else None) = Some x -> find_max_fixpoint_of_seq f sp ?Goal0 = Some x
case: (has P (iota 0 L)) => //; exact.
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
FP: exists2 a : Datatypes_nat__canonical__eqtype_Equality, a \in sp & x = f a x

exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
a: Datatypes_nat__canonical__eqtype_Equality
IN: a \in sp
FP: x = f a x

exists2 a : nat, is_in_search_space a & x = f a x
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, x: nat
SOME: find_max_fixpoint f h = Some x
NILP: ~~ nilp sp
a: Datatypes_nat__canonical__eqtype_Equality
IN: a \in sp
FP: x = f a x

is_in_search_space a
by move: IN; rewrite /sp /is_in_search_space mem_filter mem_iota andbC. Qed. (** Finally, we observe that there is no fixpoint in the search space larger than the result of [find_maximum_fixpoint]. *)
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat

forall (f : nat -> nat -> nat) (h s r : nat), Some r = find_max_fixpoint f h -> is_in_search_space s -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat

forall (f : nat -> nat -> nat) (h s r : nat), Some r = find_max_fixpoint f h -> is_in_search_space s -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, s, r: nat

Some r = find_max_fixpoint f h -> is_in_search_space s -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, s, r: nat

Some r = (if has P (iota 0 L) then find_max_fixpoint_of_seq f sp h else None) -> is_in_search_space s -> exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, s, r: nat
SOME: Some r = find_max_fixpoint_of_seq f sp h
PRED: is_in_search_space s

exists2 v : nat, Some v = find_fixpoint (f s) h & v <= r
L: nat
P: pred nat
is_in_search_space:= fun A : nat => (A < L) && P A: nat -> bool
sp:= [seq s <- iota 0 L | P s]: seq nat
f: nat -> nat -> nat
h, s, r: nat
SOME: Some r = find_max_fixpoint_of_seq f sp h
PRED: is_in_search_space s

s \in sp
by move: PRED; rewrite /is_in_search_space /sp mem_filter mem_iota //= add0n andbC. Qed. End PredicateSearchSpace.