Built with Alectryon, running Coq+SerAPI v8.15.0+0.15.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
(** * Abstract RTA for EDF-schedulers with Bounded Priority Inversion *) (** In this module we instantiate the Abstract Response-Time analysis (aRTA) to EDF-schedulers for ideal uni-processor model of real-time tasks with arbitrary arrival models. *) (** Given EDF priority policy and an ideal uni-processor scheduler model, we can explicitly specify [interference], [interfering_workload], and [interference_bound_function]. In this settings, we can define natural notions of service, workload, busy interval, etc. The important feature of this instantiation is that we can induce the meaningful notion of priority inversion. However, we do not specify the exact cause of priority inversion (as there may be different reasons for this, like execution of a non-preemptive segment or blocking due to resource locking). We only assume that that a priority inversion is bounded. *) Section AbstractRTAforEDFwithArrivalCurves. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskDeadline Task}. Context `{TaskRunToCompletionThreshold Task}. Context `{TaskMaxNonpreemptiveSegment Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context {Arrival : JobArrival Job}. Context {Cost : JobCost Job}. Context `{JobPreemptable Job}. (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** For clarity, let's denote the relative deadline of a task as D. *) Let D tsk := task_deadline tsk. (** Consider the EDF policy that indicates a higher-or-equal priority relation. Note that we do not relate the EDF policy with the scheduler. However, we define functions for Interference and Interfering Workload that actively use the concept of priorities. *) Let EDF := EDF Job. (** Consider any arrival sequence with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq. Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq. (** Next, consider any valid ideal uni-processor schedule of this arrival sequence ... *) Variable sched : schedule (ideal.processor_state Job). Hypothesis H_sched_valid : valid_schedule sched arr_seq. (** Note that we differentiate between abstract and classical notions of work conserving schedule. *) Let work_conserving_ab := definitions.work_conserving arr_seq sched. Let work_conserving_cl := work_conserving.work_conserving arr_seq sched. (** We assume that the schedule is a work-conserving schedule in the _classical_ sense, and later prove that the hypothesis about abstract work-conservation also holds. *) Hypothesis H_work_conserving : work_conserving_cl. (** Assume that a job cost cannot be larger than a task cost. *) Hypothesis H_valid_job_cost: arrivals_have_valid_job_costs arr_seq. (** Assume we have sequential tasks, i.e, jobs from the same task execute in the order of their arrival. *) Hypothesis H_sequential_tasks : sequential_tasks arr_seq sched. (** Consider an arbitrary task set ts. *) Variable ts : list Task. (** Next, we assume that all jobs come from the task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval delta = 0. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Let [tsk] be any task in ts that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Consider a valid preemption model... *) Hypothesis H_valid_preemption_model: valid_preemption_model arr_seq sched. (** ...and a valid task run-to-completion threshold function. That is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *) Hypothesis H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk. (** We introduce [rbf] as an abbreviation of the task request bound function, which is defined as [task_cost(T) × max_arrivals(T,Δ)] for some task T. *) Let rbf := task_request_bound_function. (** Next, we introduce [task_rbf] as an abbreviation of the task request bound function of task [tsk]. *) Let task_rbf := rbf tsk. (** Using the sum of individual request bound functions, we define the request bound function of all tasks (total request bound function). *) Let total_rbf := total_request_bound_function ts. (** Assume that there exists a bound on the length of any priority inversion experienced by any job of task [tsk]. Since we analyze only task [tsk], we ignore the lengths of priority inversions incurred by any other tasks.*) Variable priority_inversion_bound: duration -> duration. Hypothesis H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound. (** Let L be any positive fixed point of the busy interval recurrence. *) Variable L : duration. Hypothesis H_L_positive : L > 0. Hypothesis H_fixed_point : L = total_rbf L. (** Next, we define an upper bound on interfering workload received from jobs of other tasks with higher-than-or-equal priority. *) Let bound_on_total_hep_workload (A Δ : duration) := \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ). (** To reduce the time complexity of the analysis, we introduce the notion of search space for EDF. Intuitively, this corresponds to all "interesting" arrival offsets that the job under analysis might have with regard to the beginning of its busy-window. *) (** In the case of the search space for EDF, we consider three conditions. First, we ask whether [task_rbf A ≠ task_rbf (A + ε)]. *) Definition task_rbf_changes_at (A : duration) := task_rbf A != task_rbf (A + ε). (** Second, we ask whether there exists a task [tsko] from ts such that [tsko ≠ tsk] and [rbf(tsko, A + D tsk - D tsko) ≠ rbf(tsko, A + ε + D tsk - D tsko)]. Note that we use a slightly uncommon notation [has (λ tsko ⇒ P tskₒ) ts], which can be interpreted as follows: the task set [ts] contains a task [tsko] such that a predicate [P] holds for [tsko]. *) Definition bound_on_total_hep_workload_changes_at A := has (fun tsko => (tsk != tsko) && (rbf tsko (A + D tsk - D tsko) != rbf tsko ((A + ε) + D tsk - D tsko))) ts. (** Third, we ask whether [priority_inversion_bound (A - ε) ≠ priority_inversion_bound A]. *) Definition priority_inversion_changes_at (A : duration) := priority_inversion_bound (A - ε) != priority_inversion_bound A. (** The final search space for EDF is a set of offsets that are less than [L] and where [priority_inversion_bound], [task_rbf], or [bound_on_total_hep_workload] changes in value. *) Definition is_in_search_space (A : duration) := (A < L) && (priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A). (** Let [R] be a value that upper-bounds the solution of each response-time recurrence, i.e., for any relative arrival time [A] in the search space, there exists a corresponding solution [F] such that [R >= F + (task cost - task lock-in service)]. *) Variable R : duration. Hypothesis H_R_is_maximum: forall (A : duration), is_in_search_space A -> exists (F : duration), A + F >= priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) /\ R >= F + (task_cost tsk - task_rtct tsk). (** To use the theorem uniprocessor_response_time_bound_seq from the Abstract RTA module, we need to specify functions of interference, interfering workload and [IBF_other]. *) (** Instantiation of Interference *) (** We say that job j incurs interference at time t iff it cannot execute due to a higher-or-equal-priority job being scheduled, or if it incurs a priority inversion. *) Let interference (j : Job) (t : instant) := ideal_jlfp_rta.interference sched j t. (** Instantiation of Interfering Workload *) (** The interfering workload, in turn, is defined as the sum of the priority inversion function and interfering workload of jobs with higher or equal priority. *) Let interfering_workload (j : Job) (t : instant) := ideal_jlfp_rta.interfering_workload arr_seq sched j t. (** Finally, we define the interference bound function ([IBF_other]). [IBF_other] bounds the interference if tasks are sequential. Since tasks are sequential, we exclude interference from other jobs of the same task. For EDF, we define [IBF_other] as the sum of the priority interference bound and the higher-or-equal-priority workload. *) Let IBF_other (A R : duration) := priority_inversion_bound A + bound_on_total_hep_workload A R. (** ** Filling Out Hypothesis Of Abstract RTA Theorem *) (** In this section we prove that all hypotheses necessary to use the abstract theorem are satisfied. *) Section FillingOutHypothesesOfAbstractRTATheorem. (** Recall that L is assumed to be a fixed point of the busy interval recurrence. Thanks to this fact, we can prove that every busy interval (according to the concrete definition) is bounded. In addition, we know that the conventional concept of busy interval and the one obtained from the abstract definition (with the interference and interfering workload) coincide. Thus, it follows that any busy interval (in the abstract sense) is bounded. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

exists t1 t2 : nat, t2 <= t1 + L /\ definitions.busy_interval sched interference interfering_workload j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

forall t : instant, workload_of_jobs predT (arrivals_between arr_seq t (t + L)) <= L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
GGG: busy_interval arr_seq sched j t1 t2
exists t1 t2 : nat, t2 <= t1 + L /\ definitions.busy_interval sched interference interfering_workload j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j

forall t : instant, workload_of_jobs predT (arrivals_between arr_seq t (t + L)) <= L
by intros; rewrite {2}H_fixed_point; apply total_workload_le_total_rbf.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
GGG: busy_interval arr_seq sched j t1 t2

exists t1 t2 : nat, t2 <= t1 + L /\ definitions.busy_interval sched interference interfering_workload j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
POS: 0 < job_cost j
t1, t2: nat
T1: t1 <= job_arrival j < t2
T2: t2 <= t1 + L
GGG: busy_interval arr_seq sched j t1 t2

definitions.busy_interval sched interference interfering_workload j t1 t2
by eapply instantiated_busy_interval_equivalent_busy_interval; rt_eauto. Qed. (** Next, we prove that [IBF_other] is indeed an interference bound. *) Section TaskInterferenceIsBoundedByIBF_other. (** We show that task_interference_is_bounded_by is bounded by [IBF_other] by constructing a sequence of inequalities. *) Section Inequalities. (** Consider an arbitrary job j of [tsk]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. Hypothesis H_job_of_tsk : job_of_task tsk j. Hypothesis H_job_cost_positive: job_cost_positive j. (** Consider any busy interval <<[t1, t2)>> of job [j]. *) Variable t1 t2 : duration. Hypothesis H_busy_interval : definitions.busy_interval sched interference interfering_workload j t1 t2. (** Let's define A as a relative arrival time of job j (with respect to time t1). *) Let A := job_arrival j - t1. (** Consider an arbitrary shift Δ inside the busy interval ... *) Variable Δ : duration. Hypothesis H_Δ_in_busy : t1 + Δ < t2. (** ... and the set of all arrivals between [t1] and [t1 + Δ]. *) Let jobs := arrivals_between arr_seq t1 (t1 + Δ). (** Next, we define two predicates on jobs by extending EDF-priority relation. *) (** Predicate [EDF_from tsk] holds true for any job [jo] of task [tsk] such that [job_deadline jo <= job_deadline j]. *) Let EDF_from (tsk : Task) := fun (jo : Job) => EDF jo j && (job_task jo == tsk). (** Predicate [EDF_not_from tsk] holds true for any job [jo] such that [job_deadline jo <= job_deadline j] and [job_task jo ≠ tsk]. *) Let EDF_not_from (tsk : Task) := fun (jo : Job) => EDF jo j && (job_task jo != tsk). (** Recall that [IBF_other(A, R) := priority_inversion_bound + bound_on_total_hep_workload(A, R)]. The fact that [priority_inversion_bound] bounds cumulative priority inversion follows from assumption [H_priority_inversion_is_bounded]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= cumulative_priority_inversion sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= cumulative_priority_inversion sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= \sum_(t1 <= i < t1 + Δ) is_priority_inversion sched j i + \sum_(t1 + Δ <= i < t2) is_priority_inversion sched j i
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 <= t1 + Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 (t1 + Δ) <= \sum_(t1 <= i < t1 + Δ) is_priority_inversion sched j i + \sum_(t1 + Δ <= i < t2) is_priority_inversion sched j i
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 <= t1 + Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

t1 <= t1 + Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

t1 <= t1 + Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

t1 + Δ <= t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool
cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_priority_inversion sched j t1 t2 <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

busy_interval_prefix arr_seq sched j t1 t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: forall j : Job, arrives_in arr_seq j -> job_of_task tsk j -> 0 < job_cost j -> priority_inversion_of_job_is_bounded_by arr_seq sched j priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: busy_interval arr_seq sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => edf.EDF Job jo j && (job_task jo != tsk): Task -> Job -> bool

busy_interval_prefix arr_seq sched j t1 t2
by move: H_busy_interval => [PREF _]. Qed. (** Next, we show that [bound_on_total_hep_workload(A, R)] bounds interference from jobs with higher-or-equal priority. *) (** From lemma [instantiated_cumulative_interference_of_hep_tasks_equal_total_interference_of_hep_tasks] it follows that cumulative interference from jobs with higher-or-equal priority from other tasks is equal to the total service of jobs with higher-or-equal priority from other tasks. Which in turn means that cumulative interference is bounded by service. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + Δ) <= service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + Δ) <= service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + Δ) <= service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

service_of_jobs sched (fun jhp : Job => hep_job jhp j && (job_task jhp != job_task j)) (arrivals_between arr_seq t1 (t1 + Δ)) t1 (t1 + Δ) <= service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
quiet_time arr_seq sched j t1
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

service_of_jobs sched (fun jhp : Job => hep_job jhp j && (job_task jhp != job_task j)) (arrivals_between arr_seq t1 (t1 + Δ)) t1 (t1 + Δ) <= service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
quiet_time arr_seq sched j t1
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

quiet_time arr_seq sched j t1
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

quiet_time arr_seq sched j t1
by rewrite instantiated_quiet_time_equivalent_quiet_time; rt_eauto. Qed. (** By lemma [service_of_jobs_le_workload], the total _service_ of jobs with higher-or-equal priority from other tasks is at most the total _workload_ of jobs with higher-or-equal priority from other tasks. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ) <= workload_of_jobs (EDF_not_from tsk) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

service_of_jobs sched (EDF_not_from tsk) jobs t1 (t1 + Δ) <= workload_of_jobs (EDF_not_from tsk) jobs
by apply service_of_jobs_le_workload; rt_eauto. Qed. (** Next, we prove that the total workload of jobs with higher-or-equal priority from other tasks is bounded by the sum over all tasks [tsk_o] that are not equal to task [tsk] of workload of jobs with higher-or-equal priority from task [tsk_o].*)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo == tsk_o)) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo == tsk_o)) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo == tsk_o)) jobs
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(j0 <- jobs | EDF_not_from tsk j0) \sum_(i <- ts | [&& i != tsk, EDF j0 j & job_task j0 == i]) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (EDF_not_from tsk) jobs <= \sum_(j0 <- jobs | EDF_not_from tsk j0) \sum_(i <- ts | [&& i != tsk, EDF j0 j & job_task j0 == i]) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(i <- jobs | (i \in jobs) && EDF_not_from tsk i) job_cost i <= \sum_(i <- jobs | (i \in jobs) && EDF_not_from tsk i) \sum_(i0 <- ts | [&& i0 != tsk, EDF i j & job_task i == i0]) job_cost i
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRo: jo \in jobs
HEQ: EDF jo j
TSKo: job_task jo != tsk

job_cost jo <= \sum_(i <- ts | [&& i != tsk, EDF jo j & job_task jo == i]) job_cost jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRo: jo \in jobs
HEQ: EDF jo j
TSKo: job_task jo != tsk

job_cost jo <= (if [&& job_task jo != tsk, EDF jo j & job_task jo == job_task jo] then job_cost jo else 0) + \sum_(y <- rem (T:=Task) (job_task jo) ts | [&& y != tsk, EDF jo j & job_task jo == y]) job_cost jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRo: jo \in jobs
HEQ: EDF jo j
TSKo: job_task jo != tsk
job_task jo \in ts
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRo: jo \in jobs
HEQ: EDF jo j
TSKo: job_task jo != tsk

job_task jo \in ts
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRo: jo \in jobs
HEQ: EDF jo j
TSKo: job_task jo != tsk

job_task jo \in ts
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

forall (i : Task) (j0 : Job), i != tsk -> EDF j0 j && (job_task j0 == i) -> EDF_not_from tsk j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
jo: Job
NEQ: ~ tsko == tsk
EQ1: EDF jo j
EQ2: job_task jo = tsko

EDF_not_from tsk jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
jo: Job
NEQ: ~ tsko == tsk
EQ1: EDF jo j
EQ2: job_task jo = tsko
CONTR: job_task jo == tsk

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
jo: Job
EQ2: job_task jo = tsko
CONTR: job_task jo == tsk

tsko == tsk
by rewrite -EQ2. Qed. (** Next we focus on one task [tsk_o ≠ tsk] and consider two cases. *) (** Case 1: [Δ ≤ A + ε + D tsk - D tsk_o]. *) Section Case1. (** Consider an arbitrary task [tsk_o ≠ tsk] from [ts]. *) Variable tsk_o : Task. Hypothesis H_tsko_in_ts: tsk_o \in ts. Hypothesis H_neq: tsk_o != tsk. (** And assume that [Δ ≤ A + ε + D tsk - D tsk_o]. *) Hypothesis H_Δ_le: Δ <= A + ε + D tsk - D tsk_o. (** Then by definition of [rbf], the total workload of jobs with higher-or-equal priority from task [tsk_o] is bounded [rbf(tsk_o, Δ)]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

workload_of_jobs (EDF_from tsk_o) jobs <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

workload_of_jobs (EDF_from tsk_o) jobs <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- jobs | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- jobs | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ) <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- jobs | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- jobs | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o
\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- jobs | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

forall i : Job, true -> (if EDF i j && (job_task i == tsk_o) then job_cost i else 0) <= (if job_task i == tsk_o then job_cost i else 0)
by intros s _; case (job_task s == tsk_o); case (EDF s j).
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | job_task j0 == tsk_o) job_cost j0 <= \sum_(i <- arrivals_between arr_seq t1 (t1 + Δ) | job_of_task tsk_o i) task_cost tsk_o
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o
jo: Job
IN0: jo \in arrivals_between arr_seq t1 (t1 + Δ)
EQ: job_task jo = tsk_o

job_cost jo <= task_cost tsk_o
by rewrite -EQ; apply H_valid_job_cost; apply in_arrivals_implies_arrived in IN0. }
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ) <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ) <= rbf tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ) <= max_arrivals tsk_o Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_le: Δ <= A + ε + D tsk - D tsk_o

number_of_task_arrivals arr_seq tsk_o t1 (t1 + Δ) <= max_arrivals tsk_o (t1 + Δ - t1)
by apply H_is_arrival_curve; auto using leq_addr. } Qed. End Case1. (** Case 2: [A + ε + D tsk - D tsk_o ≤ Δ]. *) Section Case2. (** Consider an arbitrary task [tsk_o ≠ tsk] from [ts]. *) Variable tsk_o : Task. Hypothesis H_tsko_in_ts: tsk_o \in ts. Hypothesis H_neq: tsk_o != tsk. (** And assume that [A + ε + D tsk - D tsk_o ≤ Δ]. *) Hypothesis H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ. (** Important step. *) (** Next we prove that the total workload of jobs with higher-or-equal priority from task [tsk_o] over time interval [t1, t1 + Δ] is bounded by workload over time interval [t1, t1 + A + ε + D tsk - D tsk_o]. The intuition behind this inequality is that jobs which arrive after time instant [t1 + A + ε + D tsk - D tsk_o] has smaller priority than job [j] due to the term [D tsk - D tsk_o]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + Δ) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- (arrivals_between arr_seq t1 (t1 + V) ++ arrivals_between arr_seq (t1 + V) (t1 + Δ)) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(i <- arrivals_between arr_seq t1 (t1 + V) | EDF i j && (job_task i == tsk_o)) job_cost i + \sum_(i <- arrivals_between arr_seq (t1 + V) (t1 + Δ) | EDF i j && (job_task i == tsk_o)) job_cost i <= \sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(i <- arrivals_between arr_seq (t1 + V) (t1 + Δ) | EDF i j && (job_task i == tsk_o)) job_cost i == 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(i <- arrivals_between arr_seq (t1 + V) (t1 + Δ) | [&& i \in arrivals_between arr_seq (t1 + V) (t1 + Δ), EDF i j & job_task i == tsk_o]) job_cost i == 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

(fun i : Job => [&& i \in arrivals_between arr_seq (t1 + V) (t1 + Δ), EDF i j & job_task i == tsk_o]) =1 xpred0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
CONTR: [&& jo \in arrivals_between arr_seq (t1 + V) (t1 + Δ), EDF jo j & job_task jo == tsk_o]

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRIN: jo \in arrivals_between arr_seq (t1 + V) (t1 + Δ)
HEP: EDF jo j
TSKo: job_task jo = tsk_o

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
ARRIN: arrived_between jo (t1 + V) (t1 + Δ)
HEP: EDF jo j
TSKo: job_task jo = tsk_o

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: D tsk_o <= A + ε + D tsk

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: D tsk_o <= A + ε + D tsk

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

job_arrival jo < t1 + (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

job_arrival jo + D tsk_o < t1 + (A + ε + D tsk - D tsk_o) + D tsk_o
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

job_arrival j + D tsk < t1 + (A + ε + D tsk - D tsk_o) + D tsk_o
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

job_arrival j + D tsk < job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk
D tsk_o <= job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

job_arrival j + D tsk < job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk
D tsk_o <= job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

D tsk_o <= job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

D tsk_o <= job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
NEQ2: D tsk_o <= A + ε + D tsk

A + ε + D tsk <= job_arrival j + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
HEP: EDF jo j
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

False
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j <= job_arrival jo + (A + D tsk)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j <= job_arrival jo + (A + D tsk)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j <= job_arrival jo + (job_arrival j + D tsk) - t1
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j <= job_arrival j + D tsk + (job_arrival jo - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_deadline j <= job_arrival j + D tsk + (job_arrival jo - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

t1 <= job_arrival jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

t1 <= job_arrival jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

t1 <= job_arrival j + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

job_arrival jo + (A + D tsk) < job_deadline jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

A + D tsk < task_deadline (job_task jo)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

A + D tsk <= A + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
A + ε + D tsk < task_deadline (job_task jo)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

A + D tsk <= A + ε + D tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o
A + ε + D tsk < task_deadline (job_task jo)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

A + ε + D tsk < task_deadline (job_task jo)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
jo: Job
TSKo: job_task jo = tsk_o
ARRIN: t1 + (A + ε + D tsk - D tsk_o) <= job_arrival jo
NEQ2: A + ε + D tsk < D tsk_o

A + ε + D tsk < task_deadline (job_task jo)
by rewrite TSKo. Qed. (** And similarly to the previous case, by definition of [rbf], the total workload of jobs with higher-or-equal priority from task [tsk_o] is bounded [rbf(tsk_o, Δ)]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o))) <= rbf tsk_o (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o))) <= rbf tsk_o (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= rbf tsk_o (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= rbf tsk_o (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(j0 <- arrivals_between arr_seq t1 (t1 + V) | EDF j0 j && (job_task j0 == tsk_o)) job_cost j0 <= \sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(i <- arrivals_between arr_seq t1 (t1 + V)) (if EDF i j && (job_task i == tsk_o) then job_cost i else 0) <= \sum_(i <- arrivals_between arr_seq t1 (t1 + V)) (if job_task i == tsk_o then job_cost i else 0)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
s: Job

(if EDF s j && (job_task s == tsk_o) then job_cost s else 0) <= (if job_task s == tsk_o then job_cost s else 0)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= \sum_(i <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | job_of_task tsk_o i) task_cost tsk_o * 1
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(jo <- arrivals_between arr_seq t1 (t1 + V) | job_task jo == tsk_o) job_cost jo <= \sum_(i <- arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)) | job_of_task tsk_o i) task_cost tsk_o
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
j0: Job
IN0: j0 \in arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o))
EQ: job_task j0 = tsk_o

job_cost j0 <= task_cost tsk_o
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
j0: Job
IN0: j0 \in arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o))
EQ: job_task j0 = tsk_o

job_cost j0 <= task_cost (job_task j0)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
j0: Job
IN0: j0 \in arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o))
EQ: job_task j0 = tsk_o

arrives_in arr_seq j0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + (A + ε + D tsk - D tsk_o)) <= rbf tsk_o (A + ε + D tsk - D tsk_o)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

task_cost tsk_o * number_of_task_arrivals arr_seq tsk_o t1 (t1 + V) <= rbf tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

number_of_task_arrivals arr_seq tsk_o t1 (t1 + V) <= max_arrivals tsk_o V
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
V:= A + ε + D tsk - D tsk_o: nat
H_Δ_ge: V <= Δ
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

number_of_task_arrivals arr_seq tsk_o t1 (t1 + V) <= max_arrivals tsk_o (t1 + V - t1)
by apply H_is_arrival_curve; auto using leq_addr. Qed. End Case2. (** By combining case 1 and case 2 we prove that total workload of tasks is at most [bound_on_total_hep_workload(A, Δ)]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (minn (A + ε + D tsk - D tsko) Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: Δ <= A + ε + D tsk - D tsko

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ
workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: Δ <= A + ε + D tsk - D tsko

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ
workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched interference interfering_workload j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
EDF_not_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo != tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsko))) <= rbf tsko (A + ε + D tsk - D tsko)
by eapply workload_le_rbf'. Qed. End Inequalities. (** Recall that in module abstract_seq_RTA hypothesis task_interference_is_bounded_by expects to receive a function that maps some task t, the relative arrival time of a job j of task t, and the length of the interval to the maximum amount of interference. However, in this module we analyze only one task -- [tsk], therefore it is “hard-coded” inside the interference bound function [IBF_other]. Therefore, in order for the [IBF_other] signature to match the required signature in module abstract_seq_RTA, we wrap the [IBF_other] function in a function that accepts, but simply ignores the task. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
ZERO: job_cost j = 0

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
ZERO: job_cost j = 0

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
ZERO: job_cost j = 0

completed_by sched j (t1 + R2)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

let offset := job_arrival j - t1 in cumul_task_interference arr_seq sched interference tsk t2 t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

j \in arrivals_before arr_seq t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
let offset := job_arrival j - t1 in ideal_jlfp_rta.cumulative_priority_inversion sched j t1 (t1 + R2) + cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

j \in arrivals_before arr_seq t2
by eapply arrived_between_implies_in_arrivals; eauto.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

let offset := job_arrival j - t1 in ideal_jlfp_rta.cumulative_priority_inversion sched j t1 (t1 + R2) + cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= IBF_other offset R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

ideal_jlfp_rta.cumulative_priority_inversion sched j t1 (t1 + R2) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

ideal_jlfp_rta.cumulative_priority_inversion sched j t1 (t1 + R2) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

cumulative_interference_from_hep_jobs_from_other_tasks sched j t1 (t1 + R2) <= ?n
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
?n <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

service_of_jobs sched (fun jo : Job => EDF jo j && (job_task jo != tsk)) (arrivals_between arr_seq t1 (t1 + R2)) t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

service_of_jobs sched (fun jo : Job => EDF jo j && (job_task jo != tsk)) (arrivals_between arr_seq t1 (t1 + R2)) t1 (t1 + R2) <= ?n
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
?n <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo != tsk)) (arrivals_between arr_seq t1 (t1 + R2)) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo != tsk)) (arrivals_between arr_seq t1 (t1 + R2)) <= ?n
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
?n <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 (t1 + R2)) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (fun jo : Job => EDF jo j && (job_task jo == tsk_o)) (arrivals_between arr_seq t1 (t1 + R2)) <= ?n
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1
?n <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched interference interfering_workload j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched interference interfering_workload j t1

bound_on_total_hep_workload (job_arrival j - t1) R2 <= bound_on_total_hep_workload (job_arrival j - t1) R2
by done. Qed. End TaskInterferenceIsBoundedByIBF_other. (** Finally, we show that there exists a solution for the response-time recurrence. *) Section SolutionOfResponseTimeReccurenceExists. (** Consider any job j of [tsk]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. Hypothesis H_job_of_tsk : job_of_task tsk j. Hypothesis H_job_cost_positive : job_cost_positive j. (** Given any job j of task [tsk] that arrives exactly A units after the beginning of the busy interval, the bound of the total interference incurred by j within an interval of length Δ is equal to [task_rbf (A + ε) - task_cost tsk + IBF_other(A, Δ)]. *) Let total_interference_bound tsk (A Δ : duration) := task_rbf (A + ε) - task_cost tsk + IBF_other A Δ. (** Next, consider any A from the search space (in abstract sense). *) Variable A : duration. Hypothesis H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A. (** We prove that A is also in the concrete search space. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_hep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_hep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

task_rbf_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

0 != task_request_bound_function tsk (0 + ε)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

0 < task_request_bound_function tsk ε
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

0 < task_cost tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

job_cost j <= task_cost tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

job_cost j <= task_cost (job_task j)
by apply: (H_valid_job_cost _ H_j_arrives).
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x

priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x

priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

total_interference_bound tsk (A - ε) x = total_interference_bound tsk A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

task_rbf (A + ε) - task_cost tsk + IBF_other (A - ε) x = task_rbf (A + ε) - task_cost tsk + IBF_other A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

bound_on_total_hep_workload (A - ε) x == bound_on_total_hep_workload A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

\sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + D tsk - D tsk_o) x) == \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

\sum_(i <- ts | (i \in ts) && (i != tsk)) rbf i (minn (A + D tsk - D i) x) = \sum_(i <- ts | (i \in ts) && (i != tsk)) rbf i (minn (A + ε + D tsk - D i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: {in ts, forall x : Task, ~~ ((tsk != x) && (rbf x (A + D tsk - D x) != rbf x (A + ε + D tsk - D x)))}

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
ltn_x: A + ε + D tsk - D tsk_i < x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
ltn_x: A + ε + D tsk - D tsk_i < x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
by rewrite ifT //; lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

(A + D tsk - D tsk_i < x) = false
by move: gtn_x; rewrite leq_eqVlt /ε => /orP [/eqP EQ|LEQ]; lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
by rewrite eq_x. } } Qed. (** Then, there exists solution for response-time recurrence (in the abstract sense). *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space ?A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound ?A + (task_rbf (?A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload ?A (?A + F) <= ?A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R
exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space ?A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound ?A + (task_rbf (?A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload ?A (?A + F) <= ?A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R
exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F)
by rewrite addnA [_ + priority_inversion_bound A]addnC -!addnA. Qed. End SolutionOfResponseTimeReccurenceExists. End FillingOutHypothesesOfAbstractRTATheorem. (** ** Final Theorem *) (** Based on the properties established above, we apply the abstract analysis framework to infer that R is a response-time bound for [tsk]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
by rewrite /job_response_time_bound /completed_by ZERO.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

definitions.work_conserving arr_seq sched interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

definitions.work_conserving arr_seq sched interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk interference interfering_workload
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk interference interfering_workload L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

task_interference_is_bounded_by arr_seq sched tsk interference interfering_workload (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_arrival_times_are_consistent: consistent_arrival_times arr_seq
H_arr_seq_is_a_set: arrival_sequence_uniq arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
work_conserving_ab:= definitions.work_conserving arr_seq sched: (Job -> instant -> bool) -> (Job -> instant -> duration) -> Prop
work_conserving_cl:= work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
H_sequential_tasks: sequential_tasks arr_seq sched
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
interference:= fun j : Job => [eta ideal_jlfp_rta.interference sched j]: Job -> instant -> bool
interfering_workload:= fun j : Job => [eta ideal_jlfp_rta.interfering_workload arr_seq sched j]: Job -> instant -> nat
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
by eapply correct_search_space; eauto 2. Qed. End AbstractRTAforEDFwithArrivalCurves.