Built with Alectryon, running Coq+SerAPI v8.15.0+0.15.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "_ + _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ - _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ >= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ > _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ < _ < _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ * _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ : _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ & _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ | _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
Notation "[ rel _ _ in _ ]" was already used in scope fun_scope. [notation-overridden,parsing]
(** * Abstract RTA for EDF-schedulers with Bounded Priority Inversion *) (** In this module we instantiate the Abstract Response-Time analysis (aRTA) to EDF-schedulers for ideal uni-processor model of real-time tasks with arbitrary arrival models. *) (** Given EDF priority policy and an ideal uni-processor scheduler model, we can explicitly specify [interference], [interfering_workload], and [interference_bound_function]. In this settings, we can define natural notions of service, workload, busy interval, etc. The important feature of this instantiation is that we can induce the meaningful notion of priority inversion. However, we do not specify the exact cause of priority inversion (as there may be different reasons for this, like execution of a non-preemptive segment or blocking due to resource locking). We only assume that that a priority inversion is bounded. *) Section AbstractRTAforEDFwithArrivalCurves. (** Consider any type of tasks ... *) Context {Task : TaskType}. Context `{TaskCost Task}. Context `{TaskDeadline Task}. Context `{TaskRunToCompletionThreshold Task}. Context `{TaskMaxNonpreemptiveSegment Task}. (** ... and any type of jobs associated with these tasks. *) Context {Job : JobType}. Context `{JobTask Job Task}. Context {Arrival : JobArrival Job}. Context {Cost : JobCost Job}. Context `{JobPreemptable Job}. (** We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready. *) #[local] Existing Instance basic_ready_instance. (** For clarity, let's denote the relative deadline of a task as D. *) Let D tsk := task_deadline tsk. (** Consider the EDF policy that indicates a higher-or-equal priority relation. Note that we do not relate the EDF policy with the scheduler. However, we define functions for Interference and Interfering Workload that actively use the concept of priorities. *) Let EDF := EDF Job. (** Consider any arrival sequence with consistent, non-duplicate arrivals. *) Variable arr_seq : arrival_sequence Job. Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq. (** Next, consider any valid ideal uni-processor schedule of this arrival sequence that follows the scheduling policy. *) Variable sched : schedule (ideal.processor_state Job). Hypothesis H_sched_valid : valid_schedule sched arr_seq. Hypothesis H_respects_policy : respects_JLFP_policy_at_preemption_point arr_seq sched EDF. (** To use the theorem [uniprocessor_response_time_bound_seq] from the Abstract RTA module, we need to specify functions of interference, interfering workload, and [IBF_other]. Next, we define interference and interfering workload; we return to [IBF_other] later. *) (** ** Instantiation of Interference *) (** We say that job [j] incurs interference at time [t] iff it cannot execute due to a higher-or-equal-priority job being scheduled, or if it incurs a priority inversion. *) #[local] Instance ideal_jlfp_interference : Interference Job := ideal_jlfp_interference arr_seq sched. (** ** Instantiation of Interfering Workload *) (** The interfering workload, in turn, is defined as the sum of the priority inversion function and interfering workload of jobs with higher or equal priority. *) #[local] Instance ideal_jlfp_interfering_workload : InterferingWorkload Job := ideal_jlfp_interfering_workload arr_seq sched. (** Note that we differentiate between abstract and classical notions of work-conserving schedule. *) Let work_conserving_ab := definitions.work_conserving arr_seq sched. Let work_conserving_cl := work_conserving.work_conserving arr_seq sched. (** We assume that the schedule is a work-conserving schedule in the _classical_ sense, and later prove that the hypothesis about abstract work-conservation also holds. *) Hypothesis H_work_conserving : work_conserving_cl. (** Assume that a job cost cannot be larger than a task cost. *) Hypothesis H_valid_job_cost : arrivals_have_valid_job_costs arr_seq. (** Consider an arbitrary task set ts. *) Variable ts : list Task. (** Next, we assume that all jobs come from the task set. *) Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. (** Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in [ts], [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals 0 for the empty interval delta = 0. *) Context `{MaxArrivals Task}. Hypothesis H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals. Hypothesis H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts. (** Let [tsk] be any task in ts that is to be analyzed. *) Variable tsk : Task. Hypothesis H_tsk_in_ts : tsk \in ts. (** Consider a valid preemption model... *) Hypothesis H_valid_preemption_model: valid_preemption_model arr_seq sched. (** ...and a valid task run-to-completion threshold function. That is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *) Hypothesis H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk. (** We introduce [rbf] as an abbreviation of the task request bound function, which is defined as [task_cost(T) × max_arrivals(T,Δ)] for some task [T]. *) Let rbf := task_request_bound_function. (** Next, we introduce [task_rbf] as an abbreviation of the task request bound function of task [tsk]. *) Let task_rbf := rbf tsk. (** Using the sum of individual request bound functions, we define the request bound function of all tasks (total request bound function). *) Let total_rbf := total_request_bound_function ts. (** Assume that there exists a bound on the length of any priority inversion experienced by any job of task [tsk]. Since we analyze only task [tsk], we ignore the lengths of priority inversions incurred by any other tasks. *) Variable priority_inversion_bound : duration -> duration. Hypothesis H_priority_inversion_is_bounded : priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound. (** Let [L] be any positive fixed point of the busy interval recurrence. *) Variable L : duration. Hypothesis H_L_positive : L > 0. Hypothesis H_fixed_point : L = total_rbf L. (** Next, we define an upper bound on interfering workload received from jobs of other tasks with higher-than-or-equal priority. *) Let bound_on_total_hep_workload (A Δ : duration) := \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn ((A + ε) + D tsk - D tsk_o) Δ). (** To reduce the time complexity of the analysis, we introduce the notion of search space for EDF. Intuitively, this corresponds to all "interesting" arrival offsets that the job under analysis might have with regard to the beginning of its busy-window. *) (** In the case of the search space for EDF, we consider three conditions. First, we ask whether [task_rbf A ≠ task_rbf (A + ε)]. *) Definition task_rbf_changes_at (A : duration) := task_rbf A != task_rbf (A + ε). (** Second, we ask whether there exists a task [tsko] from [ts] such that [tsko ≠ tsk] and [rbf(tsko, A + D tsk - D tsko) ≠ rbf(tsko, A + ε + D tsk - D tsko)]. Note that we use a slightly uncommon notation [has (λ tsko ⇒ P tskₒ) ts], which can be interpreted as follows: the task set [ts] contains a task [tsko] such that a predicate [P] holds for [tsko]. *) Definition bound_on_total_hep_workload_changes_at A := has (fun tsko => (tsk != tsko) && (rbf tsko (A + D tsk - D tsko) != rbf tsko ((A + ε) + D tsk - D tsko))) ts. (** Third, we ask whether [priority_inversion_bound (A - ε) ≠ priority_inversion_bound A]. *) Definition priority_inversion_changes_at (A : duration) := priority_inversion_bound (A - ε) != priority_inversion_bound A. (** The final search space for EDF is a set of offsets that are less than [L] and where [priority_inversion_bound], [task_rbf], or [bound_on_total_hep_workload] changes in value. *) Definition is_in_search_space (A : duration) := (A < L) && (priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A). (** Let [R] be a value that upper-bounds the solution of each response-time recurrence, i.e., for any relative arrival time [A] in the search space, there exists a corresponding solution [F] such that [R >= F + (task cost - task lock-in service)]. *) Variable R : duration. Hypothesis H_R_is_maximum : forall (A : duration), is_in_search_space A -> exists (F : duration), A + F >= priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) /\ R >= F + (task_cost tsk - task_rtct tsk). (** Finally, we define the interference bound function ([IBF_other]). [IBF_other] bounds the interference if tasks are sequential. Since tasks are sequential, we exclude interference from other jobs of the same task. For EDF, we define [IBF_other] as the sum of the priority interference bound and the higher-or-equal-priority workload. *) Let IBF_other (A R : duration) := priority_inversion_bound A + bound_on_total_hep_workload A R. (** ** Filling Out Hypothesis Of Abstract RTA Theorem *) (** In this section we prove that all hypotheses necessary to use the abstract theorem are satisfied. *) Section FillingOutHypothesesOfAbstractRTATheorem. (** First, we prove that [IBF_other] is indeed an interference bound. *) Section TaskInterferenceIsBoundedByIBF_other. Section HepWorkloadBound. (** Consider an arbitrary job [j] of [tsk]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. Hypothesis H_job_of_tsk : job_of_task tsk j. Hypothesis H_job_cost_positive: job_cost_positive j. (** Consider any busy interval <<[t1, t2)>> of job [j]. *) Variable t1 t2 : duration. Hypothesis H_busy_interval : definitions.busy_interval sched j t1 t2. (** Let's define A as a relative arrival time of job j (with respect to time t1). *) Let A := job_arrival j - t1. (** Consider an arbitrary shift Δ inside the busy interval ... *) Variable Δ : duration. Hypothesis H_Δ_in_busy : t1 + Δ < t2. (** ... and the set of all arrivals between [t1] and [t1 + Δ]. *) Let jobs := arrivals_between arr_seq t1 (t1 + Δ). (** We define a predicate [EDF_from tsk]. Predicate [EDF_from tsk] holds true for any job [jo] of task [tsk] such that [job_deadline jo <= job_deadline j]. *) Let EDF_from (tsk : Task) := fun (jo : Job) => EDF jo j && (job_task jo == tsk). (** Now, consider the case where [A + ε + D tsk - D tsk_o ≤ Δ]. *) Section ShortenRange. (** Consider an arbitrary task [tsk_o ≠ tsk] from [ts]. *) Variable tsk_o : Task. Hypothesis H_tsko_in_ts: tsk_o \in ts. Hypothesis H_neq: tsk_o != tsk. (** And assume that [A + ε + D tsk - D tsk_o ≤ Δ]. *) Hypothesis H_Δ_ge : A + ε + D tsk - D tsk_o <= Δ. (** Then we prove that the total workload of jobs with higher-or-equal priority from task [tsk_o] over time interval [t1, t1 + Δ] is bounded by workload over time interval [t1, t1 + A + ε + D tsk - D tsk_o]. The intuition behind this inequality is that jobs which arrive after time instant [t1 + A + ε + D tsk - D tsk_o] have lower priority than job [j] due to the term [D tsk - D tsk_o]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ

workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + Δ)) <= workload_of_jobs (EDF_from tsk_o) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsk_o)))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)

t1 + (A + ε + D tsk - D tsk_o) <= job_arrival j' -> ~~ EDF_from tsk_o j'
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'

~~ (EDF j' j && (job_task j' == tsk_o))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o

~~ (EDF j' j && true)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o

EDF j' j -> false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o

job_arrival j' + task_deadline (job_task j') <= job_arrival j + task_deadline (job_task j) -> false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o
HEP: job_arrival j' + task_deadline tsk_o <= job_arrival j + task_deadline tsk

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o
HEP: job_arrival j' + task_deadline tsk_o <= job_arrival j + task_deadline tsk
LATEST: job_arrival j' <= t1 + A + D tsk - D tsk_o

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
tsk_o: Task
H_tsko_in_ts: tsk_o \in ts
H_neq: tsk_o != tsk
H_Δ_ge: A + ε + D tsk - D tsk_o <= Δ
BOUNDED: t1 + (A + ε + D tsk - D tsk_o) <= t1 + Δ
j': Job
IN': j' \in arrivals_between arr_seq t1 (t1 + Δ)
ARR': t1 + (A + 1 + D tsk - D tsk_o) <= job_arrival j'
TSK': job_task j' = tsk_o
HEP: job_arrival j' + task_deadline tsk_o <= job_arrival j + task_deadline tsk
LATEST: job_arrival j' <= t1 + A + D tsk - D tsk_o
EARLIEST: t1 <= job_arrival j'

false
by case: (leqP (A + 1 + D tsk) (D tsk_o)); [rewrite /D/A|]; lia. Qed. End ShortenRange. (** Using the above lemma, we prove that the total workload of the tasks is at most [bound_on_total_hep_workload(A, Δ)]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

\sum_(tsk_o <- ts | tsk_o != tsk) workload_of_jobs (EDF_from tsk_o) jobs <= bound_on_total_hep_workload A Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (minn (A + ε + D tsk - D tsko) Δ)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: Δ <= A + ε + D tsk - D tsko

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ
workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: Δ <= A + ε + D tsk - D tsko

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko Δ
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ
workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) jobs <= rbf tsko (A + ε + D tsk - D tsko)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
t1, t2: duration
H_busy_interval: definitions.busy_interval sched j t1 t2
A:= job_arrival j - t1: nat
Δ: duration
H_Δ_in_busy: t1 + Δ < t2
jobs:= arrivals_between arr_seq t1 (t1 + Δ): seq Job
EDF_from:= fun (tsk : Task) (jo : Job) => EDF jo j && (job_task jo == tsk): Task -> Job -> bool
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
tsko: Task
INtsko: tsko \in ts
NEQT: tsko != tsk
NEQ: A + ε + D tsk - D tsko <= Δ

workload_of_jobs (EDF_from tsko) (arrivals_between arr_seq t1 (t1 + (A + ε + D tsk - D tsko))) <= rbf tsko (A + ε + D tsk - D tsko)
eapply workload_le_rbf; rt_eauto. Qed. End HepWorkloadBound. (** Recall that in module abstract_seq_RTA hypothesis [task_interference_is_bounded_by] expects to receive a function that maps some task [t], the relative arrival time of a job [j] of task [t], and the length of the interval to the maximum amount of interference. However, in this module we analyze only one task -- [tsk], therefore it is “hard-coded” inside the interference bound function [IBF_other]. Therefore, in order for the [IBF_other] signature to match the required signature in module abstract_seq_RTA, we wrap the [IBF_other] function in a function that accepts, but simply ignores the task. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

forall (j : Job) (R t1 t2 : nat), arrives_in arr_seq j -> job_of_task tsk j -> t1 + R < t2 -> ~~ completed_by sched j (t1 + R) -> definitions.busy_interval sched j t1 t2 -> cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R) <= IBF_other (job_arrival j - t1) R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
ZERO: job_cost j = 0

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
ZERO: job_cost j = 0

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
BUSY: definitions.busy_interval sched j t1 t2
ZERO: job_cost j = 0

completed_by sched j (t1 + R2)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumul_task_interference arr_seq sched tsk t2 t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

j \in arrivals_before arr_seq t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

j \in arrivals_before arr_seq t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) + cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= IBF_other (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_priority_inversion arr_seq sched j t1 (t1 + R2) <= priority_inversion_bound (job_arrival j - t1)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

cumulative_another_task_hep_job_interference arr_seq sched j t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

service_of_jobs sched (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + R2)) t1 (t1 + R2) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + R2)) <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + R2)) <= ?n
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
?n <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

forall x : Job, x \in arrivals_between arr_seq t1 (t1 + R2) -> job_task x \in ?ys
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
\sum_(y <- ?ys | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | (hep_job^~ j) x && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
j': Job
IN: j' \in arrivals_between arr_seq t1 (t1 + R2)

job_task j' \in ?ys
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
\sum_(y <- ?ys | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | (hep_job^~ j) x && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
j': Job
IN: j' \in arrivals_between arr_seq t1 (t1 + R2)

arrives_in arr_seq j'
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
\sum_(y <- ts | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | (hep_job^~ j) x && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
j': Job
IN: j' \in arrivals_between arr_seq t1 (t1 + R2)

j' \in arrivals_between arr_seq ?t1 ?t2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
\sum_(y <- ts | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | (hep_job^~ j) x && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
TSK: job_of_task tsk j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1

\sum_(y <- ts | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | (hep_job^~ j) x && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
TSK: job_task j = tsk

\sum_(y <- ts | y != job_task j) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | hep_job x j && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
TSK: job_task j = tsk

\sum_(y <- ts | y != tsk) \sum_(x <- arrivals_between arr_seq t1 (t1 + R2) | hep_job x j && (job_task x == y)) job_cost x <= bound_on_total_hep_workload (job_arrival j - t1) R2
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
R2, t1, t2: nat
ARR: arrives_in arr_seq j
N: t1 + R2 < t2
NCOMPL: ~~ completed_by sched j (t1 + R2)
BUSY: definitions.busy_interval sched j t1 t2
POS: 0 < job_cost j
JINBI: t1 <= job_arrival j
JINBI2: job_arrival j < t2
QT: definitions.quiet_time sched j t1
TSK: job_task j = tsk

job_of_task tsk j
by apply /eqP. Unshelve. all : try by rt_eauto. Qed. End TaskInterferenceIsBoundedByIBF_other. (** Finally, we show that there exists a solution for the response-time recurrence. *) Section SolutionOfResponseTimeReccurenceExists. (** Consider any job j of [tsk]. *) Variable j : Job. Hypothesis H_j_arrives : arrives_in arr_seq j. Hypothesis H_job_of_tsk : job_of_task tsk j. Hypothesis H_job_cost_positive : job_cost_positive j. (** Given any job [j] of task [tsk] that arrives exactly [A] units after the beginning of the busy interval, the bound of the total interference incurred by [j] within an interval of length [Δ] is equal to [task_rbf (A + ε) - task_cost tsk + IBF_other(A, Δ)]. *) Let total_interference_bound tsk (A Δ : duration) := task_rbf (A + ε) - task_cost tsk + IBF_other A Δ. (** Next, consider any [A] from the search space (in abstract sense). *) Variable A : duration. Hypothesis H_A_is_in_abstract_search_space : search_space.is_in_search_space tsk L total_interference_bound A. (** We prove that A is also in the concrete search space. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

is_in_search_space A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_hep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

priority_inversion_changes_at 0 || task_rbf_changes_at 0 || bound_on_total_hep_workload_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

task_rbf_changes_at 0
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

0 != task_request_bound_function tsk (0 + ε)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

0 < task_request_bound_function tsk ε
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

0 < task_cost tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

job_cost j <= task_cost tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
ZERO: 0 = task_request_bound_function tsk (0 + ε)

job_cost j <= task_cost (job_task j)
by apply: (H_valid_job_cost _ H_j_arrives).
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x

priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x

priority_inversion_changes_at A || task_rbf_changes_at A || bound_on_total_hep_workload_changes_at A
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

false
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

total_interference_bound tsk (A - ε) x = total_interference_bound tsk A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

task_rbf (A + ε) - task_cost tsk + IBF_other (A - ε) x = task_rbf (A + ε) - task_cost tsk + IBF_other A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

bound_on_total_hep_workload (A - ε) x == bound_on_total_hep_workload A x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

\sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + D tsk - D tsk_o) x) == \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A

\sum_(i <- ts | (i \in ts) && (i != tsk)) rbf i (minn (A + D tsk - D i) x) = \sum_(i <- ts | (i \in ts) && (i != tsk)) rbf i (minn (A + ε + D tsk - D i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
WL: ~~ bound_on_total_hep_workload_changes_at A
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: {in ts, forall x : Task, ~~ ((tsk != x) && (rbf x (A + D tsk - D x) != rbf x (A + ε + D tsk - D x)))}

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)

rbf tsk_i (minn (A + D tsk - D tsk_i) x) = rbf tsk_i (minn (A + ε + D tsk - D tsk_i) x)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
ltn_x: A + ε + D tsk - D tsk_i < x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
ltn_x: A + ε + D tsk - D tsk_i < x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
by rewrite ifT //; lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i x
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
gtn_x: x < A + ε + D tsk - D tsk_i

(A + D tsk - D tsk_i < x) = false
by move: gtn_x; rewrite leq_eqVlt /ε => /orP [/eqP EQ|LEQ]; lia.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (if A + D tsk - D tsk_i < x then A + D tsk - D tsk_i else x) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x
rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
POSA: 0 < A
LTL: A < L
x: nat
LTx: x < L
INSP2: total_interference_bound tsk (A - ε) x <> total_interference_bound tsk A x
PI: priority_inversion_bound (A - ε) = priority_inversion_bound A
RBF: task_rbf A = task_rbf (A + ε)
tsk_i: Task
TS: tsk_i \in ts
OTHER: tsk_i != tsk
WL: rbf tsk_i (A + D tsk - D tsk_i) = rbf tsk_i (A + ε + D tsk - D tsk_i)
eq_x: A + ε + D tsk - D tsk_i = x

rbf tsk_i x = rbf tsk_i (A + ε + D tsk - D tsk_i)
by rewrite eq_x. } } Qed. (** Then, there exists solution for response-time recurrence (in the abstract sense). *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

exists F : nat, task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
j: Job
H_j_arrives: arrives_in arr_seq j
H_job_of_tsk: job_of_task tsk j
H_job_cost_positive: job_cost_positive j
total_interference_bound:= fun (tsk : Task) (A Δ : duration) => task_rbf (A + ε) - task_cost tsk + IBF_other A Δ: Task -> duration -> duration -> nat
A: duration
H_A_is_in_abstract_search_space: search_space.is_in_search_space tsk L total_interference_bound A
F: duration
FIX: priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F
NEQ: F + (task_cost tsk - task_rtct tsk) <= R

task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F)
by rewrite addnA [_ + priority_inversion_bound A]addnC -!addnA. Qed. End SolutionOfResponseTimeReccurenceExists. End FillingOutHypothesesOfAbstractRTATheorem. (** ** Final Theorem *) (** Based on the properties established above, we apply the abstract analysis framework to infer that [R] is a response-time bound for [tsk]. *)
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat

task_response_time_bound arr_seq sched tsk R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
ZERO: job_cost js = 0

job_response_time_bound sched js R
by rewrite /job_response_time_bound /completed_by ZERO.
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

job_response_time_bound sched js R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

work_conserving arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

sequential_tasks arr_seq sched
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

interference_and_workload_consistent_with_sequential_tasks arr_seq sched tsk
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

busy_intervals_are_bounded_by arr_seq sched tsk L
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

task_interference_is_bounded_by arr_seq sched tsk (fun=> (fun A : duration => [eta IBF_other A]))
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js
forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
Task: TaskType
H: TaskCost Task
H0: TaskDeadline Task
H1: TaskRunToCompletionThreshold Task
H2: TaskMaxNonpreemptiveSegment Task
Job: JobType
H3: JobTask Job Task
Arrival: JobArrival Job
Cost: JobCost Job
H4: JobPreemptable Job
D:= [eta task_deadline]: Task -> duration
EDF:= edf.EDF Job: JLFP_policy Job
arr_seq: arrival_sequence Job
H_valid_arrival_sequence: valid_arrival_sequence arr_seq
sched: schedule (ideal.processor_state Job)
H_sched_valid: valid_schedule sched arr_seq
H_respects_policy: respects_JLFP_policy_at_preemption_point arr_seq sched EDF
work_conserving_ab:= work_conserving arr_seq sched: Prop
work_conserving_cl:= work_conserving.work_conserving arr_seq sched: Prop
H_work_conserving: work_conserving_cl
H_valid_job_cost: arrivals_have_valid_job_costs arr_seq
ts: seq Task
H_all_jobs_from_taskset: all_jobs_from_taskset arr_seq ts
H5: MaxArrivals Task
H_valid_arrival_curve: valid_taskset_arrival_curve ts max_arrivals
H_is_arrival_curve: taskset_respects_max_arrivals arr_seq ts
tsk: Task
H_tsk_in_ts: tsk \in ts
H_valid_preemption_model: valid_preemption_model arr_seq sched
H_valid_run_to_completion_threshold: valid_task_run_to_completion_threshold arr_seq tsk
rbf:= task_request_bound_function: Task -> duration -> nat
task_rbf:= rbf tsk: duration -> nat
total_rbf:= total_request_bound_function ts: duration -> nat
priority_inversion_bound: duration -> duration
H_priority_inversion_is_bounded: priority_inversion_is_bounded_by arr_seq sched tsk priority_inversion_bound
L: duration
H_L_positive: 0 < L
H_fixed_point: L = total_rbf L
bound_on_total_hep_workload:= fun A Δ : duration => \sum_(tsk_o <- ts | tsk_o != tsk) rbf tsk_o (minn (A + ε + D tsk - D tsk_o) Δ): duration -> duration -> nat
R: duration
H_R_is_maximum: forall A : duration, is_in_search_space A -> exists F : duration, priority_inversion_bound A + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) + bound_on_total_hep_workload A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
IBF_other:= fun A R : duration => priority_inversion_bound A + bound_on_total_hep_workload A R: duration -> duration -> nat
js: Job
ARRs: arrives_in arr_seq js
TSKs: job_of_task tsk js
POS: 0 < job_cost js

forall A : duration, search_space.is_in_search_space tsk L (fun (tsk0 : Task) (A0 Δ : duration) => task_request_bound_function tsk (A0 + ε) - task_cost tsk0 + IBF_other A0 Δ) A -> exists F : duration, task_request_bound_function tsk (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other A (A + F) <= A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
by eapply correct_search_space; rt_eauto. Qed. End AbstractRTAforEDFwithArrivalCurves.