Built with 
Alectryon , running Coq+SerAPI v8.15.0+0.15.0. Bubbles (
) indicate interactive fragments: hover for details, tap to reveal contents. Use 
Ctrl+↑  Ctrl+↓  to navigate, 
Ctrl+🖱️  to focus. On Mac, use 
⌘  instead of 
Ctrl .
Require Export  prosa.model.schedule.priority_driven.Notation  "[ rel _ _ | _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ : _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ | _ ]"  was already used
in  scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "_ + _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ - _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ <= _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ < _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ >= _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ > _"  was already used in  scope nat_scope.
[notation-overridden,parsing]Notation  "_ <= _ <= _"  was already used in  scope
nat_scope. [notation-overridden,parsing]Notation  "_ < _ <= _"  was already used in  scope
nat_scope. [notation-overridden,parsing]Notation  "_ <= _ < _"  was already used in  scope
nat_scope. [notation-overridden,parsing]Notation  "_ < _ < _"  was already used in  scope
nat_scope. [notation-overridden,parsing]Notation  "_ * _"  was already used in  scope nat_scope.
[notation-overridden,parsing]
 Require Export  prosa.analysis.abstract .ideal.iw_instantiation.Notation  "[ rel _ _ | _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ : _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ | _ ]"  was already used
in  scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ | _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ : _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ | _ ]"  was already used
in  scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]
 Require Export  prosa.analysis.facts.busy_interval.busy_interval.Notation  "[ rel _ _ | _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ : _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ | _ ]"  was already used
in  scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ | _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ : _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ | _ ]"  was already used
in  scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ & _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ | _ ]"  was already used in 
scope fun_scope. [notation-overridden,parsing]Notation  "[ rel _ _ in _ ]"  was already used in  scope
fun_scope. [notation-overridden,parsing]
 
(** * Abstract RTA for FP-schedulers with Bounded Priority Inversion *) 
(** In this module we instantiate the Abstract Response-Time analysis 
    (aRTA) to FP-schedulers for ideal uni-processor model of 
    real-time tasks with arbitrary arrival models. *) 
(** Given FP priority policy and an ideal uni-processor scheduler 
    model, we can explicitly specify [interference], 
    [interfering_workload], and [interference_bound_function]. In this 
    settings, we can define natural notions of service, workload, busy 
    interval, etc. The important feature of this instantiation is that 
    we can induce the meaningful notion of priority 
    inversion. However, we do not specify the exact cause of priority 
    inversion (as there may be different reasons for this, like 
    execution of a non-preemptive segment or blocking due to resource 
    locking). We only assume that that a priority inversion is 
    bounded. *) 
 Section  AbstractRTAforFPwithArrivalCurves .
 
  (** Consider any type of tasks ... *) 
    Context  {Task  : TaskType}.
    Context  `{TaskCost Task}.
    Context  `{TaskRunToCompletionThreshold Task}.
 
  (**  ... and any type of jobs associated with these tasks. *) 
    Context  {Job  : JobType}.
    Context  `{JobTask Job Task}.
    Context  {Arrival  : JobArrival Job}.
    Context  {Cost  : JobCost Job}.
    Context  `{JobPreemptable Job}.
 
  (** Consider an FP policy that indicates a higher-or-equal priority relation, 
     and assume that the relation is reflexive. Note that we do not relate 
     the FP policy with the scheduler. However, we define functions for 
     Interference and Interfering Workload that actively use the concept of 
     priorities. We require the FP policy to be reflexive, so a job cannot 
     cause lower-priority interference (i.e. priority inversion) to itself. *) 
    Context  `{FP_policy Task}.
    Hypothesis  H_priority_is_reflexive  : reflexive_priorities.
 
  (** Consider any arrival sequence with consistent, non-duplicate arrivals. *) 
    Variable  arr_seq  : arrival_sequence Job.
    Hypothesis  H_valid_arrival_sequence  : valid_arrival_sequence arr_seq.
 
  (** Next, consider any ideal uni-processor schedule of this arrival sequence, ... *) 
    Variable  sched  : schedule (ideal.processor_state Job).
 
  (** ... allow for any work-bearing notion of job readiness, ... *) 
    Context  `{@JobReady Job (ideal.processor_state Job) Cost Arrival}.
    Hypothesis  H_job_ready  : work_bearing_readiness arr_seq sched.
 
  (** ... and assume that the schedule is valid.  *) 
    Hypothesis  H_sched_valid  : valid_schedule sched arr_seq.
 
  (** ** Instantiation of Interference *) 
  (** We say that job [j] incurs interference at time [t] iff it 
      cannot execute due to a higher-or-equal-priority job being 
      scheduled, or if it incurs a priority inversion. *) 
    #[local] Instance  ideal_jlfp_interference  : Interference Job :=
    ideal_jlfp_interference arr_seq sched. 
 
  (** ** Instantiation of Interfering Workload *) 
  (** The interfering workload, in turn, is defined as the sum of the 
      priority inversion function and interfering workload of jobs 
      with higher or equal priority. *) 
    #[local] Instance  ideal_jlfp_interfering_workload  : InterferingWorkload Job :=
    ideal_jlfp_interfering_workload arr_seq sched. 
 
  (** Note that we differentiate between abstract and classical 
      notions of work conserving schedule. *) 
    Let  work_conserving_ab  := definitions.work_conserving arr_seq sched.
    Let  work_conserving_cl  := work_conserving.work_conserving arr_seq sched.
 
  (** We assume that the schedule is a work-conserving schedule in the 
      _classical_ sense, and later prove that the hypothesis about 
      abstract work-conservation also holds. *) 
    Hypothesis  H_work_conserving  : work_conserving_cl.
 
  (** Assume we have sequential tasks, i.e, jobs from the 
      same task execute in the order of their arrival. *) 
    Hypothesis  H_sequential_tasks  : sequential_tasks arr_seq sched.
 
  (** Assume that a job cost cannot be larger than a task cost. *) 
    Hypothesis  H_valid_job_cost  :
    arrivals_have_valid_job_costs arr_seq.
 
  (** Consider an arbitrary task set [ts]. *) 
    Variable  ts  : list Task.
 
  (** Next, we assume that all jobs come from the task set. *) 
    Hypothesis  H_all_jobs_from_taskset  : all_jobs_from_taskset arr_seq ts.
 
  (** Let max_arrivals be a family of valid arrival curves, i.e., for 
      any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound 
      of [tsk], and (2) it is a monotonic function that equals 0 for 
      the empty interval [delta = 0]. *) 
    Context  `{MaxArrivals Task}.
    Hypothesis  H_valid_arrival_curve  : valid_taskset_arrival_curve ts max_arrivals.
    Hypothesis  H_is_arrival_curve  : taskset_respects_max_arrivals arr_seq ts.
 
  (** Let [tsk] be any task in ts that is to be analyzed. *) 
    Variable  tsk  : Task.
    Hypothesis  H_tsk_in_ts  : tsk \in  ts.
 
  (** Consider a valid preemption model... *) 
    Hypothesis  H_valid_preemption_model  :
    valid_preemption_model arr_seq sched.
 
  (** ...and a valid task run-to-completion threshold function. That 
      is, [task_rtct tsk] is (1) no bigger than [tsk]'s cost, (2) for 
      any job of task [tsk] [job_rtct] is bounded by [task_rtct]. *) 
    Hypothesis  H_valid_run_to_completion_threshold  :
    valid_task_run_to_completion_threshold arr_seq tsk.
 
  (** For clarity, let's define some local names. *) 
    Let  job_pending_at  := pending sched.
    Let  job_scheduled_at  := scheduled_at sched.
    Let  job_completed_by  := completed_by sched.
    Let  job_backlogged_at  := backlogged sched.
    Let  response_time_bounded_by  := task_response_time_bound arr_seq sched.
 
  (** We introduce [task_rbf] as an abbreviation of the task request 
      bound function, which is defined as [task_cost(tsk) × 
      max_arrivals(tsk,Δ)]. *) 
    Let  task_rbf  := task_request_bound_function tsk.
 
  (** Using the sum of individual request bound functions, we define 
      the request bound function of all tasks with higher-or-equal 
      priority (with respect to [tsk]). *) 
    Let  total_hep_rbf  := total_hep_request_bound_function_FP ts tsk.
 
  (** Similarly, we define the request bound function of all tasks 
      other than [tsk] with higher-or-equal priority (with respect to 
      [tsk]). *) 
    Let  total_ohep_rbf  :=
    total_ohep_request_bound_function_FP ts tsk.
 
  (** Assume that there exists a constant [priority_inversion_bound] 
      that bounds the length of any priority inversion experienced by 
      any job of [tsk].  Since we analyze only task [tsk], we ignore 
      the lengths of priority inversions incurred by any other 
      tasks. *) 
    Variable  priority_inversion_bound  : duration.
    Hypothesis  H_priority_inversion_is_bounded  :
    priority_inversion_is_bounded_by_constant
      arr_seq sched tsk priority_inversion_bound.
 
  (** Let [L] be any positive fixed point of the busy interval recurrence. *) 
    Variable  L  : duration.
    Hypothesis  H_L_positive  : L > 0 .
    Hypothesis  H_fixed_point  :
    L = priority_inversion_bound + total_hep_rbf L.
 
  (** To reduce the time complexity of the analysis, recall the notion 
      of search space. Intuitively, this corresponds to all 
      "interesting" arrival offsets that the job under analysis might 
      have with regard to the beginning of its busy-window. *) 
    Definition  is_in_search_space  A  := (A < L) && (task_rbf A != task_rbf (A + ε)).
 
  (** Let [R] be a value that upper-bounds the solution of each 
      response-time recurrence, i.e., for any relative arrival time 
      [A] in the search space, there exists a corresponding solution 
      [F] such that [R >= F + (task cost - task lock-in service)]. *) 
    Variable  R  : duration.
    Hypothesis  H_R_is_maximum  :
    forall  (A  : duration),
      is_in_search_space A ->
      exists  (F  : duration),
        A + F >= priority_inversion_bound
                + (task_rbf (A + ε) - (task_cost tsk - task_rtct tsk))
                + total_ohep_rbf (A + F) /\
        R >= F + (task_cost tsk - task_rtct tsk).
 
  (** Finally, we define the interference bound function 
      ([IBF_other]). [IBF_other] bounds the interference if tasks are 
      sequential. Since tasks are sequential, we exclude interference 
      from other jobs of the same task. For FP, we define [IBF_other] 
      as the sum of the priority interference bound and the 
      higher-or-equal-priority workload. *) 
    Let  IBF_other  (R  : duration) := priority_inversion_bound + total_ohep_rbf R.
 
  (** ** Filling Out Hypotheses Of Abstract RTA Theorem *) 
  (** In this section we prove that all preconditions necessary to use 
      the abstract theorem are satisfied. *) 
    Section  FillingOutHypothesesOfAbstractRTATheorem .
 
    (** Recall that [L] is assumed to be a fixed point of the busy 
        interval recurrence. Thanks to this fact, we can prove that 
        every busy interval (according to the concrete definition) is 
        bounded. In addition, we know that the conventional concept of 
        busy interval and the one obtained from the abstract 
        definition (with the interference and interfering workload) 
        coincide. Thus, it follows that any busy interval (in the 
        abstract sense) is bounded. *) 
      Lemma  instantiated_busy_intervals_are_bounded  :
      busy_intervals_are_bounded_by arr_seq sched tsk L.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
busy_intervals_are_bounded_by arr_seq sched tsk L
      Proof .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
busy_intervals_are_bounded_by arr_seq sched tsk L
        move  => j ARR TSK POS.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost j
exists  t1  t2  : nat,
  t1 <= job_arrival j < t2 /\
  t2 <= t1 + L /\
  definitions.busy_interval sched j t1 t2
        edestruct  (exists_busy_interval) with  (delta := L) as  [t1 [t2 [T1 [T2 BI]]]]; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost j
forall  t  : instant,
priority_inversion_bound +
workload_of_higher_or_equal_priority_jobs j
  (arrivals_between arr_seq t (t + L)) <= L
        { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost j
forall  t  : instant,
priority_inversion_bound +
workload_of_higher_or_equal_priority_jobs j
  (arrivals_between arr_seq t (t + L)) <= L
  intros ; rewrite  {2 }H_fixed_point leq_add //.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt :  instant 
workload_of_higher_or_equal_priority_jobs j
  (arrivals_between arr_seq t (t + L)) <=
total_hep_rbf L
          rewrite  /workload_of_higher_or_equal_priority_jobs /total_hep_rbf
          /total_hep_request_bound_function_FP
          /workload_of_jobs /hep_job /FP_to_JLFP.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt :  instant 
\sum_(j0 <- arrivals_between arr_seq t (t + L) | hep_task
                                                 (job_task
                                                 j0)
                                                 (job_task
                                                 j))
   job_cost j0 <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk)
   task_request_bound_function tsk_other L
          move : (TSK) =>  /eqP ->.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt :  instant 
\sum_(j <- arrivals_between arr_seq t (t + L) | hep_task
                                                 (job_task
                                                 j)
                                                 tsk)
   job_cost j <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk)
   task_request_bound_function tsk_other L
          by  apply : sum_of_jobs_le_sum_rbf; eauto .  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt1, t2 :  nat T1 :  t1 <= job_arrival j < t2 T2 :  t2 <= t1 + L BI :  busy_interval arr_seq sched j t1 t2 
exists  t1  t2  : nat,
  t1 <= job_arrival j < t2 /\
  t2 <= t1 + L /\
  definitions.busy_interval sched j t1 t2
        exists  t1 , t2; split ; first  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt1, t2 :  nat T1 :  t1 <= job_arrival j < t2 T2 :  t2 <= t1 + L BI :  busy_interval arr_seq sched j t1 t2 
t2 <= t1 + L /\
definitions.busy_interval sched j t1 t2
  split ; first  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j POS :  0  < job_cost jt1, t2 :  nat T1 :  t1 <= job_arrival j < t2 T2 :  t2 <= t1 + L BI :  busy_interval arr_seq sched j t1 t2 
definitions.busy_interval sched j t1 t2
        eapply  instantiated_busy_interval_equivalent_busy_interval; rt_eauto.
      Qed .
 
    (** Next, we prove that [IBF_other] is indeed an interference 
        bound. 
        Recall that in module abstract_seq_RTA hypothesis 
        [task_interference_is_bounded_by] expects to receive a 
        function that maps some task [tsk], the relative arrival time of 
        a job [j] of task [tsk], and the length of the interval to the 
        maximum amount of interference. 
        However, in this module we analyze only one task -- [tsk], 
        therefore it is “hard-coded” inside the interference bound 
        function [IBF_other]. Moreover, in case of a model with fixed 
        priorities, interference that some job [j] incurs from 
        higher-or-equal priority jobs does not depend on the relative 
        arrival time of job [j]. Therefore, in order for the 
        [IBF_other] signature to match the required signature in 
        module [abstract_seq_RTA], we wrap the [IBF_other] function in 
        a function that accepts, but simply ignores, the task and the 
        relative arrival time. *) 
      Lemma  instantiated_task_interference_is_bounded  :
      task_interference_is_bounded_by arr_seq sched tsk (fun  t  A  R  => IBF_other R).Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
task_interference_is_bounded_by arr_seq sched tsk
  (fun => (fun => [eta IBF_other]))
      Proof .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
task_interference_is_bounded_by arr_seq sched tsk
  (fun => (fun => [eta IBF_other]))
        intros  ? ? ? ? ARR TSK ? NCOMPL BUSY; simpl .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  definitions.busy_interval sched j t1 t2 
cumul_task_interference arr_seq sched tsk t2 t1
  (t1 + R0) <= IBF_other R0
        move : (posnP (@job_cost _ Cost j)) => [ZERO|POS].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  definitions.busy_interval sched j t1 t2 ZERO :  job_cost j = 0  
cumul_task_interference arr_seq sched tsk t2 t1
  (t1 + R0) <= IBF_other R0
        { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  definitions.busy_interval sched j t1 t2 ZERO :  job_cost j = 0  
cumul_task_interference arr_seq sched tsk t2 t1
  (t1 + R0) <= IBF_other R0
  by  exfalso ; rewrite  /completed_by ZERO in   NCOMPL.  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  definitions.busy_interval sched j t1 t2 POS :  0  < job_cost j
cumul_task_interference arr_seq sched tsk t2 t1
  (t1 + R0) <= IBF_other R0
        eapply  instantiated_busy_interval_equivalent_busy_interval in  BUSY; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumul_task_interference arr_seq sched tsk t2 t1
  (t1 + R0) <= IBF_other R0
        rewrite  /ideal_jlfp_interference; erewrite  cumulative_task_interference_split; rt_eauto; last first .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
j \in  arrivals_before arr_seq t2
        { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
j \in  arrivals_before arr_seq t2
  by  move : BUSY => [[_ [_ [_ /andP [GE LT]]]] _]; eapply  arrived_between_implies_in_arrivals; rt_eauto.  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) +
cumulative_another_task_hep_job_interference arr_seq
  sched j t1 (t1 + R0) <= IBF_other R0
        rewrite  /IBF_other leq_add; try  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <= priority_inversion_bound
        { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <= priority_inversion_bound
  apply  leq_trans with  (cumulative_priority_inversion arr_seq sched j t1 (t1 + R0)); first  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <= priority_inversion_bound
          apply  leq_trans with  (cumulative_priority_inversion arr_seq sched j t1 t2); last first .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1 t2 <=
priority_inversion_bound
          { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1 t2 <=
priority_inversion_bound
  by  apply  H_priority_inversion_is_bounded; rt_eauto; move : BUSY => [PREF QT2].  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <=
cumulative_priority_inversion arr_seq sched j t1 t2
          rewrite  [X in  _ <= X](@big_cat_nat _ _ _ (t1 + R0)) //=.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <=
\sum_(t1 <= i < t1 + R0)
   priority_inversion_dec arr_seq sched j i +
\sum_(t1 + R0 <= i < t2)
   priority_inversion_dec arr_seq sched j i
          - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_priority_inversion arr_seq sched j t1
  (t1 + R0) <=
\sum_(t1 <= i < t1 + R0)
   priority_inversion_dec arr_seq sched j i +
\sum_(t1 + R0 <= i < t2)
   priority_inversion_dec arr_seq sched j i
  by  rewrite  leq_addr.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
t1 <= t1 + R0
          - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
t1 <= t1 + R0
  by  rewrite  leq_addr.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
t1 + R0 <= t2
          - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
t1 + R0 <= t2
  by  rewrite  ltnW.
        } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_another_task_hep_job_interference arr_seq
  sched j t1 (t1 + R0) <= total_ohep_rbf R0
        { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
cumulative_another_task_hep_job_interference arr_seq
  sched j t1 (t1 + R0) <= total_ohep_rbf R0
  erewrite  cumulative_i_thep_eq_service_of_othep; rt_eauto;
          last  by  unfold  quiet_time; move : BUSY => [[_ [T1 T2]] _].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
service_of_another_task_hep_job arr_seq sched j t1
  (t1 + R0) <= total_ohep_rbf R0
          apply : leq_trans.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
service_of_another_task_hep_job arr_seq sched j t1
  (t1 + R0) <= ?Goal 
          { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
service_of_another_task_hep_job arr_seq sched j t1
  (t1 + R0) <= ?Goal 
  apply  service_of_jobs_le_workload; first  apply  ideal_proc_model_provides_unit_service.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
completed_jobs_dont_execute sched
            by  apply  (valid_schedule_implies_completed_jobs_dont_execute sched arr_seq).  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
workload_of_jobs (another_task_hep_job^~ j)
  (arrivals_between arr_seq t1 (t1 + R0)) <=
total_ohep_rbf R0
          { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
workload_of_jobs (another_task_hep_job^~ j)
  (arrivals_between arr_seq t1 (t1 + R0)) <=
total_ohep_rbf R0
  rewrite  /workload_of_jobs /total_ohep_rbf /total_ohep_request_bound_function_FP.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
\sum_(j0 <- arrivals_between arr_seq t1 (t1 + R0) | 
another_task_hep_job j0 j) job_cost j0 <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk &&
                        (tsk_other != tsk))
   task_request_bound_function tsk_other R0
            rewrite  /another_task_hep_job /hep_job /FP_to_JLFP.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost j
\sum_(j0 <- arrivals_between arr_seq t1 (t1 + R0) | 
hep_task (job_task j0) (job_task j) &&
(job_task j0 != job_task j)) job_cost j0 <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk &&
                        (tsk_other != tsk))
   task_request_bound_function tsk_other R0
            set  (pred_task tsk_other := hep_task tsk_other tsk && (tsk_other != tsk)).Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost jpred_task :=  fun  tsk_other  : Task =>
hep_task tsk_other tsk &&
(tsk_other != tsk):  Task -> bool 
\sum_(j0 <- arrivals_between arr_seq t1 (t1 + R0) | 
hep_task (job_task j0) (job_task j) &&
(job_task j0 != job_task j)) job_cost j0 <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk &&
                        (tsk_other != tsk))
   task_request_bound_function tsk_other R0
            rewrite  (eq_big (fun  j => pred_task (job_task j)) job_cost) //;
            last  by  move => j'; rewrite  /pred_task; move : TSK => /eqP ->.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost jpred_task :=  fun  tsk_other  : Task =>
hep_task tsk_other tsk &&
(tsk_other != tsk):  Task -> bool 
\sum_(i <- arrivals_between arr_seq t1 (t1 + R0) | 
pred_task (job_task i)) job_cost i <=
\sum_(tsk_other <- ts | hep_task tsk_other tsk &&
                        (tsk_other != tsk))
   task_request_bound_function tsk_other R0
            erewrite  (eq_big pred_task); [|by  done |by  move => tsk'; eauto ].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job R0, t1, t2 :  nat ARR :  arrives_in arr_seq j TSK :  job_of_task tsk j H6 :  t1 + R0 < t2 NCOMPL :  ~~ completed_by sched j (t1 + R0) BUSY :  busy_interval arr_seq sched j t1 t2 POS :  0  < job_cost jpred_task :=  fun  tsk_other  : Task =>
hep_task tsk_other tsk &&
(tsk_other != tsk):  Task -> bool 
\sum_(i <- arrivals_between arr_seq t1 (t1 + R0) | 
pred_task (job_task i)) job_cost i <=
\sum_(i <- ts | pred_task i)
   (task_request_bound_function^~ R0) i
            by  apply : sum_of_jobs_le_sum_rbf; eauto .  }   } 
      Qed .
 
    (** Finally, we show that there exists a solution for the 
        response-time recurrence. *) 
      Section  SolutionOfResponseTimeRecurrenceExists .
 
      (** Consider any job [j] of [tsk]. *) 
        Variable  j  : Job.
        Hypothesis  H_j_arrives  : arrives_in arr_seq j.
        Hypothesis  H_job_of_tsk  : job_of_task tsk j.
        Hypothesis  H_job_cost_positive : job_cost_positive j.
 
      (** Given any job [j] of task [tsk] that arrives exactly [A] 
          units after the beginning of the busy interval, the bound of 
          the total interference incurred by [j] within an interval of 
          length [Δ] is equal to [task_rbf (A + ε) - task_cost tsk + 
          IBF_other Δ]. *) 
        Let  total_interference_bound  tsk  A  Δ  :=
        task_rbf (A + ε) - task_cost tsk + IBF_other Δ.
 
      (** Next, consider any [A] from the search space (in the 
          abstract sense). *) 
        Variable  A  : duration.
        Hypothesis  H_A_is_in_abstract_search_space  :
        search_space.is_in_search_space tsk L total_interference_bound A.
 
      (** We prove that [A] is also in the concrete search space. *) 
        Lemma  A_is_in_concrete_search_space  :
        is_in_search_space A.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A 
is_in_search_space A
        Proof .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A 
is_in_search_space A
          move : H_A_is_in_abstract_search_space => [INSP | [/andP [POSA LTL] [x [LTx INSP2]]]].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
is_in_search_space A
          - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
is_in_search_space A
  rewrite  INSP.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
is_in_search_space 0 
            apply /andP; split ; first  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
task_rbf 0  != task_rbf (0  + ε)
            rewrite  neq_ltn; apply /orP; left .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
task_rbf 0  < task_rbf (0  + ε)
            rewrite  {1 }/task_rbf; erewrite  task_rbf_0_zero; eauto  2 ; try  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
0  < task_rbf (0  + ε)
            rewrite  add0n /task_rbf; apply  leq_trans with  (task_cost tsk).Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
0  < task_cost tsk
            + Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
0  < task_cost tsk
  by  apply  leq_trans with  (job_cost j); eauto  2 ; move : (H_job_of_tsk) => /eqP <-; eauto  2 .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
task_cost tsk <= task_request_bound_function tsk ε
            + Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A INSP :  A = 0  
task_cost tsk <= task_request_bound_function tsk ε
  by  eapply  task_rbf_1_ge_task_cost; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  total_interference_bound tsk (A - ε) x <>
total_interference_bound tsk A x 
is_in_search_space A
          - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  total_interference_bound tsk (A - ε) x <>
total_interference_bound tsk A x 
is_in_search_space A
  apply /andP; split ; first  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  total_interference_bound tsk (A - ε) x <>
total_interference_bound tsk A x 
task_rbf A != task_rbf (A + ε)
            apply /negP; intros  EQ; move : EQ => /eqP EQ.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  total_interference_bound tsk (A - ε) x <>
total_interference_bound tsk A x EQ :  task_rbf A = task_rbf (A + ε) 
False 
            apply  INSP2.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  total_interference_bound tsk (A - ε) x <>
total_interference_bound tsk A x EQ :  task_rbf A = task_rbf (A + ε) 
total_interference_bound tsk (A - ε) x =
total_interference_bound tsk A x
            unfold  total_interference_bound in  *.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  (fun  (tsk  : Task)
     (A  : nat)
     (Δ  : duration)
   =>
   task_rbf (A + ε) -
   task_cost tsk +
   IBF_other Δ) A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  task_rbf (A - ε + ε) - task_cost tsk +
IBF_other x <>
task_rbf (A + ε) - task_cost tsk + IBF_other x EQ :  task_rbf A = task_rbf (A + ε) 
task_rbf (A - ε + ε) - task_cost tsk + IBF_other x =
task_rbf (A + ε) - task_cost tsk + IBF_other x
            rewrite  subn1 addn1 prednK; last  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  (fun  (tsk  : Task)
     (A  : nat)
     (Δ  : duration)
   =>
   task_rbf (A + ε) -
   task_cost tsk +
   IBF_other Δ) A POSA :  0  < ALTL :  A < L x :  nat LTx :  x < L INSP2 :  task_rbf (A - ε + ε) - task_cost tsk +
IBF_other x <>
task_rbf (A + ε) - task_cost tsk + IBF_other x EQ :  task_rbf A = task_rbf (A + ε) 
task_rbf A - task_cost tsk + IBF_other x =
task_rbf (A + ε) - task_cost tsk + IBF_other x
              by  rewrite  -EQ.
        Qed .
 
      (** Then, there exists a solution for the response-time 
          recurrence (in the abstract sense). *) 
        Corollary  correct_search_space  :
        exists  (F  : duration),
          A + F >= task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) + IBF_other (A + F) /\
          R >= F + (task_cost tsk - task_rtct tsk).Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A 
exists  F  : duration,
  task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
  IBF_other (A + F) <= A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
        Proof .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A 
exists  F  : duration,
  task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
  IBF_other (A + F) <= A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
          move : (H_R_is_maximum A) => FIX.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A FIX :  is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R 
exists  F  : duration,
  task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
  IBF_other (A + F) <= A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
          feed FIX; first  by  apply  A_is_in_concrete_search_space. Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A FIX :  exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
exists  F  : duration,
  task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
  IBF_other (A + F) <= A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
          move : FIX => [F [FIX NEQ]].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A F :  duration FIX :  priority_inversion_bound +
(task_rbf (A + ε) -
 (task_cost tsk - task_rtct tsk)) +
total_ohep_rbf (A + F) <= 
A + F NEQ :  F + (task_cost tsk - task_rtct tsk) <= R 
exists  F  : duration,
  task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
  IBF_other (A + F) <= A + F /\
  F + (task_cost tsk - task_rtct tsk) <= R
          exists  F ; split ; last  by  done .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A F :  duration FIX :  priority_inversion_bound +
(task_rbf (A + ε) -
 (task_cost tsk - task_rtct tsk)) +
total_ohep_rbf (A + F) <= 
A + F NEQ :  F + (task_cost tsk - task_rtct tsk) <= R 
task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
IBF_other (A + F) <= A + F
          rewrite  -{2 }(leqRW FIX).Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat j :  Job H_j_arrives :  arrives_in arr_seq j H_job_of_tsk :  job_of_task tsk j H_job_cost_positive :  job_cost_positive j total_interference_bound :=  fun  (tsk  : Task) 
  (A  : nat) 
  (Δ  : duration) =>
task_rbf (A + ε) -
task_cost tsk + 
IBF_other Δ:  Task ->
nat -> duration -> nat A :  duration H_A_is_in_abstract_search_space :  search_space.is_in_search_space
  tsk L
  total_interference_bound
  A F :  duration FIX :  priority_inversion_bound +
(task_rbf (A + ε) -
 (task_cost tsk - task_rtct tsk)) +
total_ohep_rbf (A + F) <= 
A + F NEQ :  F + (task_cost tsk - task_rtct tsk) <= R 
task_rbf (A + ε) - (task_cost tsk - task_rtct tsk) +
IBF_other (A + F) <=
priority_inversion_bound +
(task_rbf (A + ε) - (task_cost tsk - task_rtct tsk)) +
total_ohep_rbf (A + F)
            by  rewrite  addnA [_ + priority_inversion_bound]addnC -!addnA.
        Qed .
 
      End  SolutionOfResponseTimeRecurrenceExists .
 
    End  FillingOutHypothesesOfAbstractRTATheorem .
 
  (** ** Final Theorem *) 
  (** Based on the properties established above, we apply the abstract 
      analysis framework to infer that [R] is a response-time bound 
      for [tsk]. *) 
    Theorem  uniprocessor_response_time_bound_fp  :
    response_time_bounded_by tsk R.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
response_time_bounded_by tsk R
    Proof .Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat 
response_time_bounded_by tsk R
      intros  js ARRs TSKs.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js 
job_response_time_bound sched js R
      move : (posnP (@job_cost _ Cost js)) => [ZERO|POS].Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js ZERO :  job_cost js = 0  
job_response_time_bound sched js R
      { Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js ZERO :  job_cost js = 0  
job_response_time_bound sched js R
  by  rewrite  /job_response_time_bound /completed_by ZERO.  } Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
job_response_time_bound sched js R
      eapply  uniprocessor_response_time_bound_seq; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
definitions.work_conserving arr_seq sched
      - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
definitions.work_conserving arr_seq sched
  by  eapply  instantiated_i_and_w_are_coherent_with_schedule; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
interference_and_workload_consistent_with_sequential_tasks
  arr_seq sched tsk
      - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
interference_and_workload_consistent_with_sequential_tasks
  arr_seq sched tsk
  by  eapply  instantiated_interference_and_workload_consistent_with_sequential_tasks; rt_eauto.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk ?L 
      - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
busy_intervals_are_bounded_by arr_seq sched tsk ?L 
  by  apply  instantiated_busy_intervals_are_bounded.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
task_interference_is_bounded_by arr_seq sched tsk
  ?task_interference_bound_function 
      - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
task_interference_is_bounded_by arr_seq sched tsk
  ?task_interference_bound_function 
  by  apply  instantiated_task_interference_is_bounded.Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
forall  A  : duration,
search_space.is_in_search_space tsk L
  (fun  (tsk0  : Task) (A0  Δ  : duration) =>
   task_request_bound_function tsk (A0 + ε) -
   task_cost tsk0 +
   (fun => (fun => [eta IBF_other])) tsk0 A0 Δ) A ->
exists  F  : duration,
  task_request_bound_function tsk (A + ε) -
  (task_cost tsk - task_rtct tsk) +
  (fun => (fun => [eta IBF_other])) tsk A (A + F) <=
  A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
      - Task :  TaskType H :  TaskCost Task H0 :  TaskRunToCompletionThreshold Task Job :  JobType H1 :  JobTask Job Task Arrival :  JobArrival Job Cost :  JobCost Job H2 :  JobPreemptable Job H3 :  FP_policy Task H_priority_is_reflexive :  reflexive_priorities arr_seq :  arrival_sequence Job H_valid_arrival_sequence :  valid_arrival_sequence
  arr_seq sched :  schedule (ideal.processor_state Job) H4 :  JobReady Job (ideal.processor_state Job) H_job_ready :  work_bearing_readiness arr_seq sched H_sched_valid :  valid_schedule sched arr_seq work_conserving_ab :=  definitions.work_conserving
  arr_seq sched :  Prop work_conserving_cl :=  work_conserving arr_seq sched :  Prop H_work_conserving :  work_conserving_cl H_sequential_tasks :  sequential_tasks arr_seq sched H_valid_job_cost :  arrivals_have_valid_job_costs
  arr_seq ts :  seq Task H_all_jobs_from_taskset :  all_jobs_from_taskset
  arr_seq ts H5 :  MaxArrivals Task H_valid_arrival_curve :  valid_taskset_arrival_curve ts
  max_arrivals H_is_arrival_curve :  taskset_respects_max_arrivals
  arr_seq ts tsk :  Task H_tsk_in_ts :  tsk \in  ts H_valid_preemption_model :  valid_preemption_model
  arr_seq sched H_valid_run_to_completion_threshold :  valid_task_run_to_completion_threshold
  arr_seq tsk job_pending_at :=  pending sched :  Job -> instant -> bool job_scheduled_at :=  scheduled_at sched :  Job -> instant -> bool job_completed_by :=  completed_by sched :  Job -> instant -> bool job_backlogged_at :=  backlogged sched :  Job -> instant -> bool response_time_bounded_by :=  task_response_time_bound
  arr_seq sched :  Task -> duration -> Prop  task_rbf :=  task_request_bound_function tsk :  duration -> nat total_hep_rbf :=  total_hep_request_bound_function_FP ts
  tsk :  duration -> nat total_ohep_rbf :=  total_ohep_request_bound_function_FP
  ts tsk :  duration -> nat priority_inversion_bound :  duration H_priority_inversion_is_bounded :  priority_inversion_is_bounded_by_constant
  arr_seq sched tsk
  priority_inversion_bound L :  duration H_L_positive :  0  < LH_fixed_point :  L =
priority_inversion_bound +
total_hep_rbf L R :  duration H_R_is_maximum :  forall  A  : duration,
is_in_search_space A ->
exists  F  : duration,
  priority_inversion_bound +
  (task_rbf (A + ε) -
   (task_cost tsk - task_rtct tsk)) +
  total_ohep_rbf (A + F) <= 
  A + F /\
  F + (task_cost tsk - task_rtct tsk) <=
  RIBF_other :=  fun  R  : duration =>
priority_inversion_bound + total_ohep_rbf R:  duration -> nat js :  Job ARRs :  arrives_in arr_seq js TSKs :  job_of_task tsk js POS :  0  < job_cost js
forall  A  : duration,
search_space.is_in_search_space tsk L
  (fun  (tsk0  : Task) (A0  Δ  : duration) =>
   task_request_bound_function tsk (A0 + ε) -
   task_cost tsk0 +
   (fun => (fun => [eta IBF_other])) tsk0 A0 Δ) A ->
exists  F  : duration,
  task_request_bound_function tsk (A + ε) -
  (task_cost tsk - task_rtct tsk) +
  (fun => (fun => [eta IBF_other])) tsk A (A + F) <=
  A + F /\ F + (task_cost tsk - task_rtct tsk) <= R
  by  eapply  correct_search_space; eauto  2 .
    Qed .
 
 End  AbstractRTAforFPwithArrivalCurves .