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Abstract
Motivated by an apparent contradiction on whether some scheduling policies are sustainable

or not, we revisit the topic of sustainability in real-time scheduling and argue that the existing
definitions of sustainability could be further clarified and generalized. After proposing a formal,
generic sustainability theory, we relax the existing notion of (strongly-)sustainable scheduling
policy to provide a new classification called weak sustainability, which enables less pessimistic
schedulability analyses for policies that were deemed not (strongly-)sustainable in the past. As
a proof of concept, and to better understand a model for which many mistakes were found in
the literature [9], we study weak sustainability in the context of dynamic self-suspending tasks,
where we formalize a generic suspension model in a proof assistant and provide a mechanized
proof that any JLFP scheduling policy is weakly-sustainable with respect to job costs and variable
suspension times.
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1 What Really Is Sustainability?

Since the seminal paper by Liu and Layland [14], the analysis and certification of real-time
systems has often relied on the fundamental notion of sustainability, which at a high level
expresses the idea that “if a system is proven to be safe under extreme conditions, then it
will remain safe if the conditions improve at runtime”.

One common application of this principle is to determine the schedulability of the system
by identifying worst-case scenarios. For example, any schedulability analysis for uniprocessor
fixed-priority (FP) scheduling of sporadic tasks [15] that assumes that jobs execute for their
worst-case execution time (WCET) or arrive at maximum rate, exploits the fact that the FP
scheduling policy for sporadic tasks is sustainable, i.e., it guarantees that “having better job
parameters (namely, larger inter-arrival times or smaller execution times) at runtime does
not cause any deadline miss”.

While precursors to this concept were already identified and proven in earlier papers [12,
11], the general concept of a sustainable scheduling policy was first formalized by Burns
and Baruah in 2008 [7] and later refined by Baker and Baruah in 2009 [3]. Although the
definition by Baker and Baruah is more rigorous than the original definition, we argue in
this paper that there is still a need for improvement in terms of clarity and precision.

To support our claim, in §1.1 and §1.2 we present an example in the context of uniprocessor
scheduling with self-suspending tasks [16], where we show a scheduling policy that can be
interpreted as both sustainable and not sustainable with respect to job execution times (also
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(a) EDF schedule of the original job set J . Assume that no jobs are released after time 18.
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(b) Scheduling anomaly generated from job set J , where reducing the cost of task T3’s job
yields a job set Jbetter in which task T1 misses a deadline at time 18.
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(c) Alternative job set Jsusp with original costs and shorter suspensions that is as hard to
schedule for task T1 as Jbetter .

Figure 1 (adapted from [2]) The figure above depicts three schedules under the segmented
suspension model. It shows that the impact of the lack of sustainability tightly depends on the
considered task model. Despite the anomaly shown in schedule (b), there exists a harder schedule (c)
with no anomaly that still incurs a deadline miss. If we assume that the task model allows variable
suspension times, then any schedulability analysis that covers all these different scenarios would
never claim the job set in (c) (and thus the task set) to be schedulable, regardless of the anomaly
present in schedule (b).

called job costs hereafter). Both claims are correct according to the existing definitions of
sustainability and only depend on varying interpretations by the reader. This example shows
that, despite being a well-established concept, the theory of sustainability needs further
clarification and formalization.

1.1 Uniprocessor EDF Scheduling with Self-Suspensions is Not
Sustainable With Respect to Job Costs

Consider uniprocessor earliest-deadline-first (EDF) scheduling of self-suspending tasks under
the segmented suspension model. Self-suspending tasks are used to model workloads that may
have their execution suspended at given times, for example, to perform remote operations on
co-processors, acquire locks, wait for data, or synchronize with other tasks. The segmented
self-suspending task model can be formalized as follows.

I Definition 1 (Sporadic Task Model with Segmented Self-Suspensions). Let τ be any task set
and let J be any job set generated by τ . Each task Ti ∈ τ is defined by a period pi, deadline
di and a sequence of execution and suspension segments Si = [e1

i , s
1
i , e

2
i , s

2
i , . . . , e

n
i ]. These

task parameters encode the constraints that any two jobs generated by Ti must be separated
by a minimum inter-arrival time pi. Each job released by Ti must finish its execution by a
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relative deadline di, and alternates between execution and suspension segments as defined by
the sequence Si. The execution time of the k-th execution segment of job j is upper-bounded
by ek

i , and the suspension time of its k-th suspension segment is upper-bounded by sk
i .

Next, let us recall the definition of sustainable policy as proposed by Burns and Baruah [7].

I Definition 2 (Sustainable Policy – original definition from [7]).
A scheduling policy and/or a schedulability test for a scheduling policy is sustainable

if any system deemed schedulable by the schedulability test remains schedulable when
the parameters of one or more individual tasks are changed in any, some, or all of the
following ways: (i) decreased execution requirements; (ii) larger periods; (iii) smaller
jitter; and (iv) larger relative deadlines. J

As explained by Burns and Baruah [7], the interpretation of Definition 2 for scheduling
policies concerns the values of job parameters at runtime: “[...] a scheduling policy that
guarantees to retain schedulability if actual execution requirements during run-time are smaller
than specified WCET’s, and if actual jitter is smaller than the specified maximum jitters,
would be said to be sustainable with respect to WCET’s and jitter”.

Thus, in order to show that a scheduling policy is not sustainable with respect to execution
requirements (i.e., job costs), we must find a counterexample that shows a job set J that is
schedulable under that policy, along with a job set Jbetter with lower or equal job execution
times that is not schedulable under the same policy.

Fig. 1 depicts such a counterexample for uniprocessor EDF scheduling on the segmented
self-suspending task model, adapted from prior work by Abdeddaïm and Masson [2]. In
Fig. 1-(a), we can observe the original EDF schedule of three tasks T1, T2 and T3, which
contains no deadline misses. Next, by reducing the cost of T3’s job by 1 time unit as shown
in Fig. 1-(b), the different interleaving of suspension times during [13, 16) increases the
interference incurred by task T1, causing a deadline miss at time 18.

This counterexample, which is simple enough to make the claim non-disputable, proves
that, according to Definition 2, EDF scheduling under the segmented suspension model is
not sustainable with respect to job costs.

1.2 Uniprocessor EDF Scheduling with Self-Suspensions is Sustainable
With Respect to Job Costs

Consider the same platform, task model and scheduling policy as in §1.2, and recall the
definition of sustainable policy proposed by Baker and Baruah [3].

I Definition 3 (Sustainable Policy – original definition from [3]).
Let A denote a scheduling policy. Let τ denote any sporadic task system that is

A-schedulable. Let J denote a collection of jobs generated by τ . Scheduling policy A is
said to be sustainable if and only if A meets all deadlines when scheduling any collection
of jobs obtained from J by changing the parameters of one or more individual jobs in
any, some, or all of the following ways: (i) decreased execution requirements; (ii) larger
relative deadlines; and (iii) later arrival times with the restriction that successive jobs of
any task Ti ∈ τ arrive at least pi time units apart. J

Definition 3 is similar to Definition 2, except that it explicitly makes the difference
between the notion of jobs and tasks. It requires the job set J with original parameters to
be generated by a task set τ that is A-schedulable, i.e., all job sets generated by τ have no
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deadline misses. However, note that the modified job set (which we call Jbetter) does not
have to be generated by τ .

Now, we must check whether the counterexample in Fig. 1 is still valid. At a first glance,
the job sets J and Jbetter depicted in Fig. 1-(a) and Fig. 1-(b) seem to prove that uniprocessor
EDF scheduling with segmented self-suspending tasks is not sustainable with respect to
job costs, according to Definition 3. After all, we can assume that job set J is generated
for instance by some task set τ = {(p1 = 12, d1 = 6, S1 = [2, 2, 2]), (p2 = 9, d3 = 7, S2 =
[2, 2, 2]), (p3 = 10, d3 = 10, S3 = [2])} where, for each task Ti ∈ τ , the parameters pi, di,
Si denote, respectively, the minimum inter-arrival time of Ti, the deadline of Ti, and the
sequence of execution and suspension segments of Ti.

However, let us consider the alternative job set Jsusp in Fig. 1-(c), in which the job of
task T3 has the original cost of 2 time units, and the suspension time of the second job of
task T2 is reduced by 1 time unit. Clearly, Jsusp can be generated by task set τ , since the
job costs are the same as in J and the suspension segments are no larger than those in J ,
which is allowed by the segmented suspension model. Moreover, we can observe that in the
schedule of Jsusp, task T1 again misses a deadline at time 18.

Since job set Jsusp generated by τ is not schedulable, it is clear that τ does not satisfy the
assumption of being A-schedulable required by Definition 3. Therefore, job sets J and Jbetter
in Fig. 1 are not a valid counterexample for establishing that the policy is not sustainable.
Since the counterexample is not valid, what can we really say about the sustainability of this
policy? Why do the two definitions disagree?

One aspect that is implicit but unclear in both definitions is whether all job parameters
other than the sustainable parameter (i.e., job costs) must remain constant. In fact, as
shown in Jsusp from Fig. 1-(c), in some cases we can vary the other parameters (i.e., job
suspension times) to compensate the increase in interference that would otherwise cause
the scheduling anomaly. Since this parameter variation is allowed by the task constraints,
this suggests that a task set that is schedulable for any possible value of its job suspension
times may in effect be resilient to scheduling anomalies on job costs, even though individual
schedulable job sets are not.

In fact, by constructing job sets similar to Jsusp in Fig. 1-(c), we provide a mechanized
proof (i.e., a proof that is verified by the Coq proof assistant) in §4 that establishes that
uniprocessor job-level fixed priority (JLFP) scheduling of sporadic tasks under the dynamic
suspension model is, what we later define as, weakly-sustainable with respect to job costs
and variable suspension times.

Note that this result does not make the counterexample of Abdeddaïm and Masson
incorrect. Their result is simply based on a different interpretation of sustainability where
nothing but the job parameter under consideration for the sustainability property can vary
between the compared schedules; thus, the results presented in §1.1 and §4 are both correct.
In §3, we will complement the existing sustainability theory with the notions of strong
and weak sustainability to distinguish those contradictory but correct interpretations of
sustainability.

1.3 This Paper
The seemingly contradictory results in §1.1 and §1.2 suggest the need for clarification in
the definitions of sustainability, which are currently restricted to the standard sporadic task
model and are not precise with respect to how parameters can vary across the original and
modified job sets J and Jbetter .

We believe that the solution to this problem lies in formalizing the abstract concepts
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of real-time scheduling meta-theory such as “job and task parameters” in a rigorous way,
so that the different notions of sustainability can be stated precisely. Additionally, this
approach allows transcribing those concepts into a proof assistant such as Coq to formalize
and mechanically prove key results [8]. With that in mind, we propose a formal sustainability
theory for real-time scheduling, which we present in §2.

Our goal in this paper is not only to clarify what sustainability means, but also to provide
a foundation for less pessimistic schedulability analyses for policies that are sustainable with
varying parameters such as the suspension times in the example from §1.2, a new concept that
we call weakly-sustainable policy. The exact definition and implications of weak sustainability
will be discussed in §3.

Finally, we apply this newly defined notion of weak-sustainability in §4, where we
formalize self-suspending tasks in Coq and mechanically prove that uniprocessor, job-level
fixed priority (JLFP) scheduling of self-suspending tasks under the dynamic suspension
model is weakly-sustainable with respect to job costs and varying suspension times.

To summarize, this paper makes the following contributions:

1. a formal theory of sustainability in real-time scheduling, with definitions of sustainable
policy [3, 7], sustainable analysis [3, 6, 7] and self-sustainable analysis [3] generalized to
any scheduling policy and any task and platform models (§2);

2. the definition of the new notions of strongly- and weakly- sustainable policies (§3), and
the corresponding composition rules (§3.2);

3. the first formalization of sustainability theory and real-time scheduling with self-suspensions
in a proof assistant (§4.1 and online appendix [1]); and

4. a mechanized proof of weak sustainability of uniprocessor JLFP scheduling of dynamic
self-suspending tasks with respect to job costs and varying suspension times (§4.2–§4.4
and online appendix [1]).

2 Formalization of Sustainability Theory

In this section, we formalize the theory of sustainability in real-time scheduling and char-
acterize the basic notions of sustainability proposed in the literature, namely sustainable
policy [3, 7], sustainable analysis [6, 7] and self-sustainable analysis [3].

Our motivation for developing this theory is twofold: we aim to (a) clarify and generalize
the existing notions of sustainability so that they become compatible with any scheduling
policy and any task and platform models, and (b) provide the theoretical support for defining
the new concept of weak sustainability, which will be covered in §3 and mechanically proven
in §4 for uniprocessor JLFP scheduling of dynamic self-suspending tasks.

Note that this section does not fundamentally introduce new concepts but spells out
precisely common implicit assumptions about the task and platform models and gives a
more formal presentation of the real-time scheduling meta-theory, which will be used to
mechanically prove the results (see §4).

In order to distinguish the different nuances of sustainability, one must be able to correlate
the variation of job and task parameters with schedulability. Hence, we must formalize the
system model and present the basic definitions related to jobs and tasks.

2.1 Platform Model
We begin by stating the main assumptions about the platform model, in particular the
notions of time, and platform parameters, which specify part of the scheduling problem to
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be solved.
First, note that all definitions in this paper are compatible with both discrete and dense

time.
Next, to be able to represent the different system models from the literature, we introduce

the concept of a processor platform and its associated parameters.
I Definition 4 (Processor Platform). Let platform Π be the system on which jobs are scheduled.
I Definition 5 (Platform Parameter). Each platform Π has a finite set of parameters Pplat =
{p1, . . . , pn}.
I Example 1 (Common Platforms). Examples of platforms include uniprocessor systems,
identical multiprocessors [10], and uniform multiprocessors [4]. Multiprocessor platforms
usually have an associated parameter m ∈ Pplat that indicates the number of processors.

Note that Definition 3 does not limit the set of parameters defining a platform to its
number of processors; in fact, the set of parameters Pplat could also express the heterogeneity
of the platform [5], its power consumption, or execution speed profiles [17]. We keep the set
of parameters unspecified in order to retain maximal generality.

This approach is uncommon. Most works tend to limit their results to a specific system
model (e.g., task-level fixed priority scheduling of sequential tasks on single or multi-core
processors). Instead, we prefer generality to specificity, so that the concepts and properties
presented hereafter can be instantiated for any scheduling problem.

2.1.1 Jobs
After discussing the general aspects of the system model, we now define a job set.
I Definition 6 (Job Set). We define a job set J as a (potentially infinite) collection of jobs
J = {j1, j2, . . .}.

Next, in order to define sustainability without being restricted to a particular task model,
we generalize the notion of a job parameter.
IDefinition 7 (Job Parameter). We denote as job parameters any finite set Pjob = {p1, . . . , pn},
where each parameter pi ∈ Pjob is a function over jobs. J

I Example 2. Common job parameters include cost(j), the actual job execution time,
arrival(j), the absolute job arrival time, and deadline(j), the relative job deadline. They may
for instance also include the job suspension time in the case of self-suspending jobs, its level
of parallelism and/or its energy consumption if such properties are of interest. J

Next, we define the notion of scheduling policy, which specifies the strategy for selecting
jobs to be scheduled.
I Definition 8 (Scheduling Policy). Given a platform π and a job set J with job parameters
Pjob, we define a scheduling policy σ as any algorithm that determines which jobs in J are
scheduled at any time t on platform Π.

For job sets that have associated deadlines, we can also define whether they are schedulable.
I Definition 9 (Schedulable Job Set). Assume that jobs have a deadline as one of their
parameters. Then, we say that a job set J is schedulable on platform Π under policy σ iff
none of its jobs misses a deadline when scheduled on Π under policy σ.

To compare different job sets, we must also be able to express how job parameters can
vary across job sets (e.g., a job’s cost increased while its arrival time remained constant).
For that, we define whether two job sets differ only by a given set of parameters.
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I Definition 10 (Varying Job Parameters in V ). Consider any subset of job parameters
V ⊆ Pjob, which we call variable parameters, and consider two enumerated job sets J =
{j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}. We say that J and J ′ differ only by V iff |J | = |J ′| and

∀i, ∀p ∈ (Pjob \ V ), p(ji) = p(j′
i), where |J | denotes the cardinality of job set J .

I Example 3. By stating that {j1, j2} and {j′
1, j

′
2} differ only by V = {cost}, we claim that

jobs j1 and j′
1 (respectively, j2 and j′

2), are identical in all parameters other than cost. This
is useful to formalize, for example, the idea that “schedulability is maintained when reducing
only the cost of a job”.

2.1.2 Tasks
While some notions of sustainability apply exclusively to job sets, one can also describe how
the variation of task parameters affects schedulability analysis results. To be able to reason
at the task level, we begin by defining task set and task parameters.
I Definition 11 (Task Set). We define a task set τ as a finite set of tasks {T1, . . . , Tn}.
IDefinition 12 (Task Parameters). We call task parameters any finite set Ptask = {p1, . . . , pn},
where each parameter pi ∈ Ptask is a function over tasks.
I Example 4. Similar to the job parameters in Example 2, common task parameters include,
but are not limited to, cost(Ti), the worst-case execution time of task Ti, and period(Ti), the
period or minimum inter-arrival time of task Ti.

Next, we define a task model, which determines how job sets are related to task sets.
I Definition 13 (Task Model). We define a task modelM as the collection of all task sets
that can be defined with given task parameters Ptask, along with a set of constraints relating
job parameters with task parameters.
I Definition 14 (Generated Job Sets). Every task set τ ∈M generates a (potentially infinite)
collection of job sets denoted jobsets(τ) = {J1,J2, . . .}, with the condition that for every job
set J ∈ jobsets(τ) and every job j ∈ J , (a) j belongs to an associated task in τ , denoted
task(j), and (b) the job parameters of j are constrained by the task parameters of task(j), as
determined byM.

One example of such task model constraint is the upper bound on job execution times.
I Example 5 (Constraint on Job Execution Time). LetM be the sporadic task model. Let the
job parameter cost(j) denote the actual execution time of job j and let the task parameter
cost(Ti) denote the WCET of task Ti. For every job set J generated byM, the cost of each
job j ∈ J is upper-bounded by the cost of its task, i.e.,

∀τ ∈M,∀J ∈ jobsets(τ),∀j ∈ J , cost(j) ≤ cost(task(j)).

Using the notion of generated job sets, we can now define whether a task set is schedulable.
I Definition 15 (Schedulable Task Set). We say that task set τ ∈ M is schedulable on
platform Π under scheduling policy σ iff every generated job set J ∈ jobsets(τ) is schedulable
on Π under σ.

Similarly to Definition 10, in order to relate parameters across task sets, we define whether
two task sets differ only by a given set of parameters.
I Definition 16 (Varying Task Parameters in V ). Consider any subset of task parameters
V ⊆ Ptask, which we call variable parameters, and consider two task sets τ = {T1, T2, . . .}
and τ ′ = {T ′

1, T
′
2, . . .}. We say that τ and τ ′ differ only by V iff |τ | = |τ ′| and ∀ i,∀ p ∈

(Ptask \ V ), p(Ti) = p(T ′
i ), where |τ | denotes the cardinality of task set τ .
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2.2 Generalized Sustainability Definitions
In this section, we use the basic concepts about jobs and tasks to formalize the notions of
sustainability found in the literature, namely sustainable policy (§2.2.1), sustainable analysis
(§2.2.2) and self-sustainable analysis (§2.2.3). Note that, differently from prior work [3, 6, 7],
our definitions are generic and compatible with different task and platform models.

2.2.1 Sustainable Scheduling Policy
We begin by generalizing the concept of a sustainable scheduling policy [7, 3], which was
briefly discussed in §1. The definition captures the idea that if a policy is sustainable with
respect to a set of job parameters, having “better” values for those parameters at runtime
does not cause any deadline misses. We call this notion, “strong sustainability” for reasons
that will be made clear in §3. Formally, it is stated as follows.
I Definition 17 (Strongly-Sustainable Policy). Assume any real-time scheduling policy σ and
platform Π, and consider any subset of job parameters S ⊆ Pjob, which we call sustainable
parameters. For each parameter p ∈ S, let J �p J ′ be any partial-order relation over job sets
J and J ′ that indicates that every job in J has no worse parameter p than its corresponding
job in J ′. Then, we say that the scheduling policy σ is strongly-sustainable with respect to
the job parameters in S iff

∀ J s.t. J is schedulable on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀p ∈ S, Jbetter �p J ,
Jbetter is schedulable on platform Π under policy σ.

Definition 17 states that, under a strongly-sustainable scheduling policy σ, whenever we
compare two job sets and show that the job set with “worse parameters” does not miss any
deadline, then the job set with “better parameters” must also not miss any deadline.

Note that the relation �p is a crucial part of the specification and should be clearly
indicated in the sustainability claim, as shown in the next examples.

I Example 6 (Sustainability with Decreasing Job Costs).
Let σ denote any uniprocessor work-conserving, fixed-priority scheduling policy under

the sporadic task model. Let cost(j) denote the actual execution time of job j. Given
any job sets J = {j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}, we define the relation J �cost J ′

as ∀i, cost(ji) ≤ cost(j′
i).

Using the relation �cost, we can instantiate Definition 17. This property expresses
the notion that, under policy σ, decreasing job execution times does not render the system
unschedulable. This property was proven by Ha and Liu [12] for different job models.

J

Similarly, one can also define sustainability with respect to job inter-arrival times. It just
requires a more nuanced parameter order definition, as shown in the following example.

I Example 7 (Sustainability with Increasing Job Inter-Arrival Times).
Let σ denote any work-conserving, fixed-priority scheduling policy under the sporadic

task model. Let arrival(j) denote the absolute arrival time of job j. Next, given any job



F. Cerqueira, G. Nelissen and B. Brandenburg XX:9

sets J = {j1, j2, . . .} and J ′ = {j′
1, j

′
2, . . .}, we define the relation �interarrival as

∀i, ∀jprev,∀j′
prev s.t.

task(ji) = task(jprev) = task(j′
i) = task(j′

prev) and
arrival(jprev) < arrival(ji) and arrival(j′

prev) < arrival(j′
i),

arrival(ji)− arrival(jprev) ≥ arrival(j′
i)− arrival(j′

prev).

This relation expresses that if J �interarrival J ′, then the distance between two consecutive
jobs of the same task in J is no worse (i.e., no smaller) than in J ′.

Based on the job arrival function and the relation �interarrival, we can instantiate
Definition 17 to obtain the corresponding sustainability property for policy σ. J

Finally, note that Definition 17 differs from Definition 3 (in §1.2) due to Baker and
Baruah [3], as it does not require the original job set J to belong to some task set τ
that is schedulable. Thus, according to our definition, Figs. 1-(a) and 1-(b) are a valid
counterexample for establishing non-sustainability (in the strong sense), which agrees with
Definition 2 in §1.1.

2.2.2 Sustainable Schedulability Analysis
Having discussed how sustainability applies to scheduling policies, we now present the
corresponding definitions for schedulability analyses, starting with the notion of sustainable
schedulability analysis [6, 7, 3]. Before we proceed, we must define schedulability analysis.
I Definition 18 (Schedulability Analysis). Let a schedulability analysis A for task modelM,
platform Π, and scheduling policy σ denote any algorithm that assesses whether a task set
τ ∈M is schedulable on Π under policy σ.

Now we state whether a given schedulability analysis A is sustainable. The intuition is
that if analysis A is sustainable with respect to certain job parameters, then for any task
set τ that is deemed schedulable by A, having better values for such parameters at runtime
than those in the job sets generated by τ does not cause any deadline misses.
I Definition 19 (Sustainable Analysis). Consider any schedulability analysis A for task model
M, platform Π, and scheduling policy σ, and consider any subset of job parameters S ⊆ Pjob,
which we call sustainable parameters. For each parameter p ∈ S, let J �p J ′ be any partial-
order relation over job sets J and J ′ that indicates whether every job in J has no worse
parameter p than its corresponding job in J ′. Then, we say that analysis A is sustainable
with respect to S iff

∀ τ ∈M s.t. τ is deemed schedulable by A,
∀ J ∈ jobsets(τ),∀ Jbetter s.t.
J and Jbetter differ only by S and ∀p ∈ S,Jbetter �p J ,
Jbetter is schedulable on Π under policy σ.

Although the definitions of strongly-sustainable policy (Definition 17) and sustainable
analysis (Definition 19) both refer to the runtime behavior of the policy, the two notions
are different. If the analyzed policy σ is strongly-sustainable w.r.t. some parameters S, then
any sufficient or exact schedulability analysis for σ is also sustainable w.r.t. S. However,
even if σ is not strongly-sustainable, it is possible to find sufficient schedulability analyses
that are sustainable. In fact, we argue this is exactly the case that an intuitive notion of
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a “safe analysis” is trying to address: the underlying policy σ may exhibit various kinds
of scheduling anomalies, but if a specific task set is deemed schedulable by a sustainable
analysis, then no deadlines will be missed in the actual system even if some parameters turn
out to be “better in the real system than assumed during analysis”.

2.2.3 Self-Sustainable Analysis
Another type of sustainability that can be found in the literature, also related to schedulability
analysis, is the notion of self-sustainable analysis [3]. The intuition is that if analysis A is
self-sustainable with respect to a set of task parameters, then for any task set that is deemed
schedulable by analysis A, every task set with better values for those parameters will also be
deemed schedulable by A.
I Definition 20 (Self-Sustainable Analysis). Let A be any schedulability analysis for task
modelM, platform Π, and scheduling policy σ, and consider any subset of task parameters
S ⊆ Ptask. For each parameter p ∈ S, let τ �p τ

′ be any partial-order relation over task
sets τ and τ ′ that indicates whether every task in τ has no worse parameter p than its
corresponding task in τ ′. Then we say that schedulability analysis A is self-sustainable with
respect to S iff

∀ τ ∈ M s.t. τ is deemed schedulable by A,
∀ τbetter s.t. τ and τbetter differ only by S and ∀p ∈ S, τbetter �p τ ,

τbetter is deemed schedulable by A. (1)

To clarify the definition, we provide an example.

I Example 8 (RTA is Self-Sustainable with respect to Decreasing Task Costs).
Let A be some response-time analysis (RTA) for the sporadic task model and let

WCET(Ti) denote the worst-case execution time of task Ti. Given any task sets τ =
{T1, T2, . . .} and τ ′ = {T ′

1, T
′
2, . . .} with same number of tasks, we define the relation

τ �WCET τ ′ as ∀i,WCET (Ti) ≤WCET (T ′
i ).

Based on the task parameter WCET and the relation �WCET , we can instantiate the
self-sustainability property as in Definition 20, which then expresses the notion that if
the RTA claims τ to be schedulable, then it must also claim task sets with lower WCETs
to be schedulable. J

Note that, despite their similarity, the notions of sustainable and self-sustainable analysis
are fundamentally different. While sustainability refers to job parameters, self-sustainability
concerns task parameters. Moreover, to prove that an analysis A is sustainable, one must
show that the job sets generated by a task set τ deemed schedulable by A do not have
any anomalies. On the other hand, proving that analysis A is self-sustainable is a purely
mathematical property, akin to a notion of monotonicity, of the analysis algorithm itself
(seen as a black box) and has nothing to do with actual schedules. For example, to prove the
property in Example 8, one must show that if the RTA computes a fixed point R for given
task costs, then it will compute a fixed point R′ ≤ R if lower task costs are provided.

3 Weakly-Sustainable Scheduling Policies

Recall from §1.1 that uniprocessor EDF scheduling of self-suspending tasks was proven to be
not strongly-sustainable with respect to job costs, and as mentioned at the end of §2.2.1,
this result agrees with our notion of strongly-sustainable policy (Definition 17).
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However, in §1.2, we also hinted (but did not prove) that this scheduling policy is still
sustainable to some extent with respect to job costs. As shown in Fig. 1-(c), by reducing
suspension times (i.e., a transformation that is compliant with the task model and the
constraints set by the task set τ), we were able to construct a job set Jsusp ∈ jobsets(τ) that
is as hard to schedule as job set Jbetter. This suggests that any schedulability analysis A
applied to task set τ would deem it “not schedulable” anyway because of job set Jsusp.

The fact that Jbetter itself is not schedulable does not straightforwardly prove that the
uniprocessor EDF scheduling policy applied to self-suspending tasks is not sustainable in
some sense w.r.t. job costs, at least if self-suspension times may vary at runtime. In fact,
whether or not any parameters other than the sustainable parameters should be allowed to
vary at runtime is the cause of most confusion in the various interpretations of sustainability
found in the state of the art [3, 6, 7]. That is the motivation behind formalizing the notion
of varying job and task parameters as defined in Definitions 10 and 16.

Thus, while the notion of strongly-sustainable policy (Definition 17) expresses that the
system remains schedulable if we decrease job costs while maintaining all other parameters
constant, we believe that this is too strong an assumption in many, if not most, settings. In
contrast, the sustainability property that we are going to define allows other parameters to
vary, subject to the constraints of the given task set. The reasoning behind that is that one
can build more efficient schedulability analyses by knowing specifically what job parameters
can be assumed to have maximal values and which ones should be considered as variables.
The current theory does not allow such fine-grained categorization.

To develop a supporting theory for schedulability analyses based on this idea, in this
section we propose a new classification for sustainable scheduling policies that differentiates
between strong sustainability and weak sustainability.

3.1 Definition of Weakly-Sustainable Policy
As suggested in the previous section, in order to define weak sustainability, we must be able
to infer that a collection of job sets remains schedulable when certain parameters are allowed
to vary. This idea is captured by the following definition.

I Definition 21 (Schedulable with Varying Job Parameters V ). Given a task set τ and subset
of job parameters V ⊆ Pjob, we say that a job set J is schedulable with varying parameters
V subject to task set τ on platform Π under policy σ iff for any jobset Jother ∈ jobsets(τ)
such that J and Jother differ only by V , then Jother is schedulable on Π under policy σ.

To illustrate the definition, we provide an example.

I Example 9 (Schedulable with Varying Costs).
Assume any scheduling policy σ and consider the set of variable parameters V =

{cost}. Given a job set J = {j1, j2} generated by task set τ , we say that J is schedulable
with varying costs subject to task set τ iff every job set Jother generated by τ that has two
jobs and the same parameters as J except for their costs is schedulable. That is, any job
set constructed by changing only the job costs of J (to higher or lower values), without
violating the constraints set forth by the parameters of task set τ , must be schedulable.

J

In other words, one way to think about this notion is to say that job set J is not only
schedulable itself, but also a “schedulability witness” for a whole family of related job sets
that are identical in all parameters except for those in V . Using the concept of schedulability
with varying parameters, we can now define whether a policy is weakly-sustainable.
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I Definition 22 (Weakly-Sustainable Policy). Assume any platform Π, task model M, and
scheduling policy σ, and consider any disjoint subsets of job parameters S ⊆ Pjob and
V ⊆ Pjob, which we call sustainable and variable parameters, respectively. For each sustainable
parameter p ∈ S, let J �p J ′ be any partial-order relation over job sets J and J ′ that
indicates whether every job in J has no worse parameter p than its corresponding job in J ′.
Then we say that scheduling policy σ is weakly-sustainable with sustainable parameters S and
variable parameters V iff

∀ τ ∈M,∀ J ∈ jobsets(τ) s.t.
J is schedulable with varying V subject to τ on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀ p ∈ S,Jbetter �p J ,

Jbetter is schedulable on platform Π under policy σ.

The idea of weak sustainability is that if we can determine (with some schedulability
analysis A) that a job set is schedulable for all variations of parameters in V (subject to the
constraints imposed by its associated task set), then all job sets with better parameters S
must be schedulable. For clarity, we provide the following example.

I Example 10 (Weak Sustainability w.r.t. Job Costs and Varying Suspension Times).
Consider any uniprocessor JLFP scheduling policy σ under the dynamic suspension

model, i.e., jobs can suspend at any time but the total suspension duration of each job is
bounded by its task’s maximum suspension time. Let susp(j) denote the total suspension
time of job j and cost(j) the execution time of job j.

Using job parameters S = {cost} and V = {susp}, and the relation �cost as in
Example 6, one can instantiate Definition 22 and prove (as will be shown in §4) that
for any task set τ ∈M, if job set J generated by τ is schedulable for all variations of
suspension times (subject to the constraints imposed by τ), then all job sets with lower
or equal job costs will also be schedulable. J

In the specific case where the set of varying parameters V is empty, we call the scheduling
policy strongly-sustainable.
I Definition 23 (Strongly-Sustainable Policy). We say that a policy is strongly-sustainable with
respect to the job parameters in S iff it is weakly-sustainable with respect to the sustainable
parameters in S and an empty set of variable parameters V = ∅.

Note that if V = ∅, proving that job set J is schedulable with varying parameters V is
the same as establishing that J itself is schedulable. That implies the following equivalence,
which connects the definitions of sustainable policy in §2 and §3.
I Corollary 1 (Equivalence of Strong Sustainability). The notion of strongly-sustainable policy
as defined in Definition 23 is equivalent to Definition 17.

For practical purposes, the weak sustainability property is useful for constraining the
search space when developing schedulability analyses for some scheduling policy σ. As
is already known, if policy σ is strongly-sustainable with respect to the parameters in S,
maximizing/minimizing such parameters enables constructing worst-case scenarios (e.g., the
critical instant for uniprocessor FP scheduling of sporadic tasks [14]).

However, recall that policy σ might not be strongly-sustainable with respect to S. But if
we are still able to prove that σ is weakly-sustainable with respect to S and variable parameters
V , we can still maximize/minimize the parameters in S, as long as the schedulability analysis
checks all values of the parameters in V . In other words, establishing a weak sustainability
property can be thought of as a dimensionality reduction.
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For instance, having proven in Theorem 4 in §4.4 that uniprocessor JLFP scheduling of
self-suspending tasks is weakly-sustainable with respect to job costs and variable suspension
times, we know that any schedulability analysis for that model may assume that all jobs
generated by the tasks execute for their maximum execution time, and must only search for
the worst-case assignments of job suspension times.

3.2 Composing Weak Sustainability Results
Although the definition of strong sustainability refers to a set S of multiple parameters,
one can still establish the sustainability of each parameter in isolation. In fact, the critical
instant for the sporadic task model is obtained by composing worst-case assumptions about
individual job parameters: maximizing job costs, minimizing inter-arrival time, etc.

As will be shown in Theorem 1, this composition rule applies not only for strong
sustainability (as discussed in prior work [3]), but can also be extended to weak sustainability.
Before presenting the theorem, we first provide an alternative definition of weak sustainability
(based on the contrapositive of Definition 22), which simplifies the proofs.
I Definition 24 (Weakly-Sustainable Policy – alternative definition). Assume any platform Π,
task modelM and scheduling policy σ, and consider any disjoint subsets of job parameters
S ⊆ Pjob and V ⊆ Pjob, which we call sustainable and variable parameters, respectively. For
each sustainable parameter p ∈ S, let J �p J ′ be any partial-order relation over job sets J
and J ′ that indicates whether every job in J has no worse parameter p than its corresponding
job in J ′. Then, we say that the scheduling policy is weakly-sustainable with sustainable
parameters S and variable parameters V iff

∀ J s.t. J is not schedulable on platform Π under policy σ,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.
J and Jworse differ only by S and ∀p ∈ S,J �p Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V and
J ′

worse is not schedulable on platform Π under policy σ.

Put differently, for any job set J that is not schedulable, if we can find another job set
Jworse that is generated by some task set τ and J is “better” than Jworse, then there exists
a member in Jworse’s “family” of related jobs that is also not schedulable.

In addition, we must introduce the notion of independent sets of job parameters.
I Definition 25 (Independent Sets of Job Parameters). We say that subsets of job parameters
A ⊂ Pjob and B ⊂ Pjob are independent with respect to task model M iff for all task
parameter ptask defined byM, and for every pA ∈ A and pB ∈ B, if pA is constrained by
ptask according to modelM, then pB is not constrained by ptask according to modelM.

In the most common task models considered in the real-time literature, job parameters
are usually independent of each other.
I Example 11 (Parameters Are Usually Independent). In the sporadic task model with
self-suspending tasks, the sets of job parameters A = {cost, arrival} and B = {susp}
have independent task constraints, since these job parameters are each constrained by a
different task parameter, namely, the task WCET, minimum inter-arrival time and maximum
suspension time. In contrast, in a hypothetical task model where every job j is split into two
execution sections of length cost1(j) and cost2(j) such that cost1(j)+cost2(j) ≤ cost(task(j)),
the parameters {cost1} and {cost2} are clearly non-independent.
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Using the definition of weak sustainability above (Definition 24) and the notion of
independent sets of job parameters (Definition 25), we establish the composition rule for
weakly-sustainable policies.
I Theorem 1 (Composition Rule: Weak – Weak). Consider any task model M, scheduling
policy σ and processor platform Π. Let Sa, Va, Sb, Vb denote subsets of the job parameters
Pjob such that Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, and such that either Sb is independent of
Pjob \Sb, or Sa is independent of Pjob \Sa, with respect to task modelM. Assume that (a) σ
is weakly-sustainable with respect to Sa and variable parameters Va, and that (b) σ is weakly-
sustainable with respect to Sb and variable parameters Vb. Then (c) σ is weakly-sustainable
with respect to Sa ∪ Sb and variable parameters Va ∪ Vb.

Proof. Consider any job set J that is not schedulable on platform Π under policy σ. Let
τ be any task set, and let Jworse ∈ jobsets(τ) be any job set that only differs from J by
the parameters in Sa ∪ Sb and that w.r.t. Sa ∪ Sb has no better parameters than J . Then,
according to Definition 24, we must prove that there exists a job set J ′

worse ∈ jobsets(τ) that
only differs from Jworse with respect to Va ∪ Vb and that is also not schedulable.

Using the independent parameters assumption, assume without loss of generality that Sb

is independent of all other job parameters Pjob \ Sb with respect to modelM. If this is not
the case, then by assumption we have that Sa is independent of other parameters Pjob \ Sa

and we can build a job set J ′
b using parameters in Sb instead of building a job set J ′

a using
parameters in Sa in Step 1 of the proof.

1. Step 1 – Construction of J ′
a from J : Let Ja be the same job set as J , but

with the same job parameters in Sa as Jworse. That is, let J = {j1, j2, . . .} and
Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then, we

define Ja = {ja
1 , j

a
2 , . . .} with same cardinality such that for any index i, we have

∀p ∈ Sa, p(ja
i ) = p(jw

i ) and ∀p /∈ Sa, p(ja
i ) = p(ji).

Next, we construct a task set τa ∈ M such that for every task parameter ptask that
constrains job parameters in Pjob \ Sb, the value of ptask in τa is the same as in τ , and
for for every task parameter ptask that constrains job parameters in Sb, the value of ptask
in τa is the same to the task set that generated job set J . Since Ja only differs from
Jworse ∈ jobsets(τ) with respect to Sb, and Sb is independent of the other job parameters,
it follows that Ja ∈ jobsets(τa).
Since J is not schedulable, and J and Ja differ only by Sa, we can exploit the fact that
σ is weakly-sustainable with Sa and varying Va. Thus, it follows that there exists a job
set J ′

a ∈ jobsets(τa) that differs from Ja only by the parameters in Va and that is not
schedulable on platform Π under policy σ.

2. Step 2 – Construction of J ′
ab from J ′

a: Let Jab be the same job set as J ′
a except

that the job parameters in Sb are the same as in Jworse. That is, let J ′
a = {ja′

1 , j
a′

2 , . . .}
and Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then,

we define Jab = {jab
1 , jab

2 , . . .} with same cardinality such that for any index i, we have
∀p ∈ Sb, p(jab

i ) = p(jw
i ) and ∀p /∈ Sb, p(jab

i ) = p(ja′

i ).
Note that by construction, Jab has the same job parameters as Jworse ∈ jobsets(τ), except
for Va, which was obtained when generating J ′

a via weak-sustainability. However, note
that J ′

a is generated by task set τa, which has the same constraints for Va as τ , since Va

is independent of the other parameters. Thus, every job parameter of Jab is compatible
with τ , i.e., Jab ∈ jobsets(τ).
Since J ′

a is not schedulable, and J ′
a and Jab differ only by Sb, we can exploit the fact

that σ is weakly-sustainable with Sb and varying Vb. Thus, there must exist a job set
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J ′
ab ∈ jobsets(τ) that differs from Jab only by the parameters in Vb and that is not

schedulable on platform Π under policy σ.

Since J has the same parameters as Jworse except for those in Sa ∪ Sb, and because Ja and
Jab were constructed from J by copying the parameters Sa and Sb from Jworse and varying
the parameters in Va ∪ Vb, it follows that J ′

ab has the same parameters as Jworse, except
for the variable parameters Va and Vb. Moreover, since Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, this
guarantees that Sa and Sb do not vary during the construction of J ′

a and J ′
ab, so for every

p ∈ Sa ∪ Sb, the order �p is preserved across the successive job set transformations.
Thus, we conclude that there exists a job set J ′

worse = J ′
ab that belongs to jobsets(τ),

that only differs from Jworse with respect to Va ∪ Vb and is also not schedulable on platform
Π under policy σ. J

Assuming Vb = ∅ yields a rule for combining strong and weak sustainability results.
I Corollary 2 (Composition Rule: Weak – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa, Va and Sb denote subsets of the job parameters Pjob such that
Sb ∪ Va = ∅. Assume that σ is weakly-sustainable with respect to Sa and variable Va and also
strongly-sustainable with respect to Sb. Then, σ is weakly-sustainable with respect to Sa ∪ Sb

and variable Va.
Finally, assuming Va = Vb = ∅ yields the composition rule for strong sustainability, which

was already proven by Baker and Baruah [3].
I Corollary 3 (Composition Rule: Strong – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa and Sb denote subsets of the job parameters Pjob. Assume that
σ is strongly-sustainable with respect to Sa and also strongly-sustainable with respect to Sb.
Then, σ is strongly-sustainable with respect to Sa ∪ Sb.

4 Uniprocessor Scheduling of Dynamic Self-Suspending Tasks is
Weakly-Sustainable w.r.t. Job Costs and Variable Suspensions

In this section, we prove that uniprocessor JLFP scheduling with dynamic self-suspending
tasks is weakly-sustainable with respect to job costs and variable suspension times. Although
we could have focused on other real-time task models, we chose to study the sustainability of
self-suspending tasks for the following reasons.

1. Recent Errors: This topic has faced many misunderstandings and errors in the past,
with a considerable number of unsound results being published [9]. We hope that our
work on sustainability introduces helpful formalism and provides a better understanding
of the task model.

2. Future Work on Schedulability Analysis: Proving weak sustainability of uniproces-
sor JLFP scheduling of dynamic self-suspending tasks can provide directions for future
work. It enables less pessimistic and more efficient schedulability analyses to be developed,
by reducing the search space to only the parameters that must be kept variable (i.e.,
suspension times), while the others (i.e., execution times) remain constant.

To address the issue of recent errors and increase the degree of confidence in the results,
our proof has been mechanized in Prosa [8], a library for the Coq proof assistant that allows
formal specification and mechanized proofs of real-time scheduling theory. The specification
and proofs are available online [1] and can be checked independently with the CoqChk tool.
Simple step-by-step instructions are provided on the website.
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Note that, despite being phrased in terms of sporadic tasks under discrete time for the
sake of simplicity, this proof is conceptually also compatible with other job arrival models
(periodic, sporadic, bursty, etc.) and dense time.

The rest of this section is structured as follows. First, we present our formalization of the
dynamic suspension model, which is required for stating the theorems in Prosa. Next, we
provide an overview of our proof strategy based on schedule reductions, which can be reused
in other sustainability proofs. In the remaining subsections, we discuss the high-level steps
of the proof, which despite being specific for scheduling with self-suspensions, highlight key
steps necessary in a rigorous proof of sustainability.

4.1 A Generic Suspension Model
In order to instantiate the sustainability claim for real-time scheduling of self-suspending
tasks, we must formally define the concept of self-suspension.
I Definition 26 (Job Suspension Time). We define job suspension time as a function susp(j, s)
such that for any job j and any value s ∈ N, susp(j, s) expresses the duration for which j
must suspend immediately after receiving s units of service.

The job suspension parameter is explained more clearly in the following example.

I Example 12 (Table of Suspension Durations).
Job suspension times susp(j, s) can be understood as a table containing the duration of

the suspension intervals associated with job j. For example, for a job j such that cost(j) =
5, we can define susp(j, s) that equals 0 except for susp(j, 3) = 2 and susp(j, 4) = 3.

This suspension table indicates that job j suspends for 2 time units just after it
receives 3 units of service, and suspends for 3 time units just after it receives 1 additional
unit of service. This is equivalent to saying that job j executes for 3 time units, then
suspends for 2 time units, then executes for 1 more time unit, then suspends for 3 more
time units and finally completes its last time unit of execution. J

Note that, by allowing arbitrary suspension durations between each unit of service, this
model is generic enough to represent any suspension pattern under discrete time. Thus, it
supports both the segmented [16] and the dynamic suspension model [13], which are both
commonly used in the literature on self-suspensions in real-time systems.

By accumulating suspension durations, we can define the total suspension time of a job.
I Definition 27 (Total Suspension Time). We define the total suspension time suspΣ(j) of
job j as the cumulative suspension time up to completion, i.e.,

suspΣ(j) =
∑

s<cost(j)

susp(j, s)

After clarifying job suspension times, we now define task suspension times and show how
both are related under the dynamic suspension model.
I Definition 28 (Task Suspension Time). For any task Ti, we define the task suspension time
susp(Ti) as an upper-bound on the total suspension time of any job of τ .
I Definition 29 (Suspension Time Constraints). The dynamic suspension model requires that
the total suspension time of any job is upper-bounded by the suspension time of its task, i.e.,

∀ τ ∈M,∀ J ∈ jobsets(τ),∀ j ∈ J , suspΣ(j) ≤ susp(task(j)).

Beside its suspension time, every task Ti is defined by a WCET, a minimum inter-arrival
time or period, and a deadline, as explained in Definition 1.
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Figure 2 Proof strategy for establishing weak sustainability with respect to job costs and variable
suspension times. Given a job ji that misses a deadline in schedule S of the original job set J ,
we construct a new job set J ′

worse and a new schedule S ′ where the corresponding job j′
i misses a

deadline. Note that in schedule S ′, job costs are no smaller than in S, suspension times can be
defined arbitrarily (within the bounds of the task set), and all other job parameters (i.e., arrival
time, deadline) remain unchanged.

4.2 Overview of the Proof Strategy
Having presented the main characteristics of the dynamic self-suspending task model, we
now explain our proof strategy for establishing weak sustainability of uniprocessor JLFP
scheduling of dynamic self-suspending tasks w.r.t. job costs and variable suspension times.
For simplicity, the proof is based on the alternative definition of weakly-sustainable policy
(Definition 24). According to Definition 24, we must prove that

∀ J s.t. J is not schedulable under uniprocessor JLFP scheduling,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.

J and Jworse differ only by S = {cost} and J �cost Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V = {susp} and
J ′

worse is not schedulable under uniprocessor JLFP scheduling.

That is, first we consider any job set J that is not schedulable and any job set Jworse
that has “no better job costs” than J (and that is otherwise identical). Then, we must
show that there exists a job set J ′

worse generated by the same task set as Jworse that differs
from Jworse only by its job suspension times and that it is not schedulable. In particular J
and Jworse have equal suspension times (but not necessarily equal execution costs), whereas
Jworse and J ′

worse have equal execution costs (but not necessarily equal suspension times).
Our proof begins by considering any job set J and its associated schedule S where some

job misses a deadline. Then, we construct a job set J ′
worse together with its schedule S ′

where some job also misses a deadline. This strategy is illustrated in Fig. 2.
In the next section, we propose an algorithm for iteratively constructing schedule S ′

(and hence the associated job set J ′
worse) based on S. It is followed by the two main proof

obligations: (a) proving that some job misses a deadline in S ′ (§4.3.1) and (b) proving that
S ′ is a valid schedule of J ′

worse (§4.3.2). This proves that J ′
worse is not schedulable.

4.3 Constructing J ′
worse and Schedule S ′

Based on the strategy proposed in §4.2, we now present the algorithm to construct schedule
S ′ and the associated job set J ′

worse, based on the original schedule S. In the remainder
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of this paper, whenever we want to refer to the same job before and after the parameter
transformation (i.e., from J to J ′

worse), we refer to them as corresponding jobs ji and j′
i.

First, recall that jobs in J ′
worse have no better job costs than in J , i.e., for any corre-

sponding jobs ji and j′
i, cost(ji) ≤ cost(j′

i). Since they might have to execute for different
durations, we begin by defining the notion of added cost.
I Definition 30 (Added Cost). We define the added cost ∆cost(j′

i) of job j′
i in J ′

worse as the
difference between its original and inflated costs, i.e., ∆cost(j′

i) = cost(j′
i)− cost(ji) ≥ 0.

In order to guarantee that schedule S ′ becomes as hard as schedule S (i.e., so that jobs
still miss their deadlines) and at the same time easy to compare in terms of received job
service (i.e., the time for which a job excuted since its release), we construct S ′ based on the
idea of “picking jobs that are late with respect to S”, where late is defined as follows.
I Definition 31 (Late job). We say that job j′

i is late in schedule S′ at time t iff the service
received by j′

i in S′ up to time t is less than the service received by the corresponding job ji

in schedule S (compensated by the added cost), i.e.,

service(j′
i, t) < service(ji, t) + ∆cost(j′

i).

We now present the algorithm used to iteratively build schedule S ′ and job set J ′
worse.

Algorithm 1 ensures that (i) every job j′
i ∈ J ′

worse executes for its total execution cost cost(j′
i)

(≥ cost(ji)), (ii) every job j′
i ∈ J ′

worse has a total suspension time susp(j′
i) upper-bounded

by the suspension time susp(ji) of its corresponding job in schedule S, and (iii) at least one
job of J ′

worse misses its deadline in S ′ (as proven in Sec 4.3.1).
I Algorithm 1 (Construction of Job Set J ′

worse and Schedule S ′). Consider any time t and
let J(t) denote the set that contains every job j′

i that is pending (i.e., released, not completed,
and not suspended) in schedule S ′ at time t and such that either (a) j′

i is late at time t or
(b) the corresponding job ji is scheduled in S at time t.

1. Schedule: We schedule in S′ at time t the highest-priority job of J(t), or idle the
processor if J(t) is empty.

2. Suspensions: Any job j′
i ∈ J ′

worse suspends in S ′ at time t iff the corresponding job ji

is suspended in S and j′
i is not late.

Note that Algorithm 1 not only picks late jobs, but (a) favors higher-priority jobs, and
(b) tries to copy schedule S if possible. While rule (a) is required to ensure that the schedule
respects the JLFP policy, rule (b) provides a tie-break rule if there are multiple jobs that
can be picked, in which case we choose the same job as the job scheduled in S.

It only remains to be shown that schedule S ′ results in a deadline miss (Theorem 2) and
schedule S ′ does not violate any property of the scheduling policy, platform, and task model,
such as work conservation, priority enforcement, etc. (Theorem 3).

But first, we emphasize that Algorithm 1 builds a schedule S ′ and hence a job set J ′
worse

that has different suspension times than the original job set J . Therefore, the presented
argument indeed proves the weak-sustainability of uniprocessor JLFP scheduling under the
dynamic self-suspending task model w.r.t. job cost and variable suspension time.

4.3.1 Proving that S ′ Misses a Deadline
In order to prove that some job j′

i ∈ jobsets′
worse misses a deadline in S ′, we first recall the

concept of job service.
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I Definition 32 (Job Service). Given a schedule S, we define job service service(j, t) as the
cumulative service received by job j in the interval [0, t).

Then, based on the definition of service and the construction of S ′ (Algorithm 1), we can
prove the following powerful invariant that relates the two schedules.
I Lemma 1 (Service Invariant). For any corresponding jobs ji ∈ J and j′

i ∈ J ′
worse, at any

time t, we have the service invariant that service(j′
i, t) ≤ service(ji, t) + ∆cost(j′

i).

Proof. Proven in Prosa [1]. Consider any pair of corresponding jobs ji and j′
i. The proof

follows by induction on time t.

1. Base Case: At time t = 0, jobs have received no service, thus service(j′
i, 0) = 0 =

service(ji, t) ≤ service(ji, t) + ∆cost(j′
i).

2. Inductive Step: Assume as the induction hypothesis that, for some t, service(j′
i, t) ≤

service(ji, t)+∆cost(j′
i). Then we must prove service(j′

i, t+1) ≤ service(ji, t+1)+∆cost(j′
i).

First, consider the simple case where job j′
i is not scheduled in S ′ at time t. Then,

service(j′
i, t+ 1) = service(j′

i, t) (j′
i is not scheduled in S ′ at t)

≤ service(ji, t) + ∆cost(j′
i) (by induction hypothesis)

≤ service(ji, t+ 1) + ∆cost(j′
i). (by monotonicity of service)

Otherwise, assume that j′
i is scheduled in S ′ at time t. From the schedule construction

(Algorithm 1), it follows that either (a) S and S ′ schedule corresponding jobs at time t,
or (b) S ′ schedules a late job at time t. We analyze both cases.

a. Corresponding Jobs are Scheduled: The corresponding jobs scheduled in S and
S ′ at time t must be ji and j′

i, so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

≤ service(ji, t) + ∆cost(j′
i) + 1 (by induction hypothesis)

= service(ji, t+ 1) + ∆cost(j′
i) (ji is scheduled in S at time t).

b. Late Job: Job j′
i must be the highest-priority late job in S ′ at time t. By the definition

of late job (Definition 31), it follows that service(j′
i, t) < service(ji, t) + ∆cost(j′

i), so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

< service(ji, t) + ∆cost(j′
i) + 1 (by assumption)

≤ service(ji, t) + ∆cost(j′
i). (by converting < to ≤)

The claim holds in all cases, which concludes the proof by induction. J

Since we must prove that schedule S ′ results in a deadline miss, we use the service
invariant above to conclude that jobs complete earlier in S than in S ′.
I Corollary 4 (Jobs Complete Earlier in S). For any corresponding jobs ji ∈ J and j′

i ∈ J ′
worse,

if j′
i has completed in schedule S ′ by time t, then ji has completed in S by time t.

Proof. Proven in Prosa [1]. Follows from Lemma 1, since ji receives enough service in S to
complete before the corresponding j′

i in S ′. J

Recall that we initially assumed that some job misses a deadline in S. We can thus
conclude that the corresponding job also misses a deadline in S ′.

ECRTS 2018
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I Theorem 2 (Deadline Miss). There exists a job j′
i ∈ J ′

worse that misses a deadline in S ′.

Proof. Proven in Prosa [1]. The proof follows by contradiction. Assume that there is
no deadline miss in S ′. Next, recall that there exists a job ji in schedule S that misses a
deadline. However, by Corollary 4, if the corresponding job j′

i completed on time in S ′, then
it must have completed no later in the original schedule S. Since ji and j′

i differ only in
execution cost and suspension times, but not in their deadlines, this implies that ji cannot
have missed a deadline in S, which is a contradiction. J

4.3.2 Proving that S ′ is a Valid Schedule
Although we have already established the non-schedulability of the generated schedule S ′, it
remains to be shown that schedule S ′ is valid and compatible with the task model.
I Theorem 3 (Valid Schedule). Schedule S ′ is a valid uniprocessor schedule of job set J ′

worse
assuming JLFP scheduling of sporadic, dynamic self-suspending tasks.

Proof. Proven in Prosa [1]. Follows from Algorithm 1, since suspension intervals in schedule
S ′ are no longer than those in S and the fact that the dynamic self-suspension model imposes
only an upper bound on total job suspension time, and since by construction the derived
schedule S ′ is work-conserving, respects self-suspensions, and respects job priorities. J

4.4 Main Claim
Based on the strategy explained in §4.2, by combining Theorems 2 and 3, we prove that the
scheduling policy is weakly-sustainable.
I Theorem 4 (Weak Sustainability). Uniprocessor JLFP scheduling of sporadic self-suspending
tasks under the dynamic suspension model is weakly-sustainable with respect to job costs and
variable suspension times.

Proof. Proven in Prosa [1]. Instantiate Definition 24 with uniprocessor JLFP scheduling of
sporadic self-suspending tasks under the dynamic suspension model for S = {cost} and V =
{susp}. Theorems 2 and 3 imply that for any schedule S of job set J that misses a deadline,
there exists a schedule S ′ of the transformed job set J ′

worse that misses a deadline. J

5 Conclusion and Future Work

We have identified that the existing notions of sustainability in real-time scheduling allow for
multiple interpretations on whether real-time scheduling of self-suspending tasks is sustainable.
To resolve the issue, we developed a precise sustainability theory for real-time scheduling
that is compatible with any task and platform model (§2), and also proposed the new notions
of strongly- and weakly-sustainable policies (§3), which can be used to derive less pessimistic
schedulability analyses for policies that were shown to not be strongly-sustainable.

To better understand a model for which many mistakes were found in the literature [9],
we chose to study weak sustainability in the context of self-suspending tasks. For that, we
developed a generic model for self-suspensions (§4.1) that was formalized in the Coq proof
assistant and integrated into Prosa [8, 1]. Finally, we mechanically proved in Prosa that
uniprocessor JLFP scheduling of self-suspending tasks is weakly-sustainable with respect to
job costs and variable suspension times (§4.2–§4.4).

In ongoing work, we are working towards leveraging the obtained weak sustainability
result to derive new, mechanized schedulability tests for the dynamic suspension model.
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