Library prosa.util.seqset

From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq fintype.

In this section, we define a notion of a set (based on a sequence without duplicates).
Section SeqSet.

Let T be any type with decidable equality.
  Context {T : eqType}.

We define a set as a sequence that has no duplicates.
  Record set :=
    _set_seq :> seq T ;
    _ : uniq _set_seq (* no duplicates *)

Now we add the ssreflect boilerplate code to support _ == _ and _ _ operations.
  Canonical Structure setSubType := [subType for _set_seq].
  Definition set_eqMixin := [eqMixin of set by <:].
  Canonical Structure set_eqType := EqType set set_eqMixin.
  Set Warnings "-redundant-canonical-projection".
  Canonical Structure mem_set_predType := PredType (fun (l : set) ⇒ mem_seq (_set_seq l)).
  Set Warnings "redundant-canonical-projection".
  Definition set_of of phant T := set.

End SeqSet.

Notation " {set R } " := (set_of (Phant R)).

Next we prove a basic lemma about sets.
Section Lemmas.

Consider a set s.
  Context {T : eqType}.
  Variable s : {set T}.

Then we show that element of s are unique.
  Lemma set_uniq : uniq s.
  Proof. by destruct s. Qed.

End Lemmas.