Library prosa.analysis.facts.model.overheads.sbf.fp

In this section, we define an SBF for the FP scheduling policy in the presence of overheads.
Consider any type of tasks...
  Context {Task : TaskType}.
  Context {FP : FP_policy Task}.
  Context `{MaxArrivals Task}.

... an arbitrary task set ts, ...
  Variable ts : seq Task.

... and bounds DB, CSB, and CRPDB on dispatch overhead, context-switch overhead, and preemption-related overhead, respectively.
  Variable DB CSB CRPDB : duration.

Consider a task tsk.
  Variable tsk : Task.

We define the blackout bound for FP in an interval of length Δ as the number of jobs with higher-or-equal priority (w.r.t. a given task tsk) that can arrive in Δ times two, plus one, multiplied by the sum of all overhead bounds.
The "+1" accounts for the fact that n arrivals can result in up to 1 + 2n segments without a schedule change, and thus up to 1 + 2n intervals wherein overhead duration is bounded by DB + CSB + CRPDB.
Under FP scheduling the set of tasks that needs to be considered is restricted: only jobs of tasks with higher-or-equal priority relative to tsk can cause schedule changes, which allows the blackout bound to be stated in terms of this subset of tasks.
We define FP's SBF as the interval length minus the (slowed-down) blackout bound in the same interval.
The slowdown ensures that the resulting SBF is monotonic and unit-growth, which is necessary to obtain response-time bounds using aRTA.
  #[local] Instance fp_ovh_sbf : SupplyBoundFunction :=
    fun ΔΔ - slowed fp_blackout_bound Δ.

End OverheadResourceModelValidSBF.

In the following section, we show that the SBF defined above is indeed a valid SBF.
We assume the classic (i.e., Liu & Layland) model of readiness without jitter or self-suspensions, wherein pending jobs are always ready.
  #[local] Existing Instance basic_ready_instance.

Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{MaxArrivals Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.
  Context `{JobPreemptable Job}.

Consider an FP-policy that indicates a higher-or-equal priority relation, and assume that this relation is reflexive and transitive.
Consider any valid arrival sequence...
... and any explicit-overhead uni-processor schedule without superfluous preemptions of this arrival sequence.
Assume that the schedule respects the FP policy.
Assume that the preemption model is valid.
We consider an arbitrary task set ts ...
  Variable ts : seq Task.

... and assume that all jobs stem from tasks in this task set.
We assume that max_arrivals is a family of valid arrival curves that constrains the arrival sequence arr_seq, i.e., for any task tsk in ts, max_arrival tsk is (1) an arrival bound of tsk, and ...
... (2) a monotonic function that equals 0 for the empty interval delta = 0.
We assume that all jobs have positive cost. This restriction is not fundamental to the analysis, but rather an artifact of the current proof structure in the library.
  Hypothesis H_all_jobs_have_positive_cost :
     j,
      arrives_in arr_seq j
      job_cost_positive j.

Finally, we assume that the schedule respects a valid overhead resource model with dispatch overhead DB, context-switch overhead CSB, and preemption-related overhead CRPDB.
  Variable DB CSB CRPDB : duration.
  Hypothesis H_valid_overheads_model :
    overhead_resource_model sched DB CSB CRPDB.

We show that the SBF is monotone.
  Lemma overheads_sbf_monotone :
     tsk,
      sbf_is_monotone (fp_ovh_sbf ts DB CSB CRPDB tsk).
  Proof.
    movetsk x y NEQ.
    interval_to_duration x y k.
    have EQ: a b c d, (a + d b + c) (a - b c - d). { clear. intros. lia. }
    apply: EQ.
    rewrite [in leqRHS]addnC -addnA leq_add2l.
    apply unit_growth_function_k_steps_bounded.
    by apply slowed_is_unit_step.
  Qed.

The introduced SBF is also a unit-supply SBF.
  Lemma overheads_sbf_unit :
     tsk,
      unit_supply_bound_function (fp_ovh_sbf ts DB CSB CRPDB tsk).
  Proof.
    movetsk δ; rewrite/fp_ovh_sbf.
    have LE:
      slowed (fp_blackout_bound ts DB CSB CRPDB tsk) δ
       slowed (fp_blackout_bound ts DB CSB CRPDB tsk) δ.+1.
    { apply slowed_respects_monotone; last by lia.
      movex y LE; rewrite /fp_ovh_sbf.
      rewrite leq_mul2l; apply/orP; right.
      rewrite leq_add2l leq_mul2l; apply/orP; right.
      rewrite big_seq_cond [leqRHS]big_seq_cond.
      apply leq_sumtsko /andP [INo _].
      by apply H_valid_arrival_curve.
    }
    lia.
  Qed.

Lastly, we prove that the SBF is valid.
  Lemma overheads_sbf_busy_valid :
     tsk,
      valid_busy_sbf arr_seq sched tsk (fp_ovh_sbf ts DB CSB CRPDB tsk).
  Proof.
    movetsk; split; first by unfold fp_ovh_sbf.
    movej t1 t2 ARR [TSK PREF] t /andP [NEQ1 NEQ2].
    interval_to_duration t1 t δ.
    rewrite supply_during_complement; last first.
    { by apply: overheads_proc_model_provides_unit_supply; eauto 1. }
    rewrite addKn; apply leq_sub2l.
    apply slowed_respects_pointwise_leq with (f := fun δblackout_during sched t1 (t1 + δ)).
    { by move⇒ ?; rewrite addnA; apply blackout_during_unit_growth. }
    moveΔ LE; rewrite /fp_blackout_bound.
    have F:
      blackout_during sched t1 (t1 + Δ)
       (DB + CSB + CRPDB) × (1 + 2 × (\sum_(tsko <- ts | hep_task tsko (job_task j)) max_arrivals tsko Δ)).
    { apply: leq_trans; first by apply: finite_sched_changes_bounded_overheads_blackout ⇒ //.
      rewrite /blackout_during leq_mul2l; apply/orP; right.
      have [Z|POSΔ] := posnP Δ.
      { by subst; rewrite addn0 /number_schedule_changes /index_iota subnS subnn //=. }
      rewrite [_ + 1]addnC leq_add2l; eapply schedule_changes_bounded_by_total_arrivals_FP ⇒ //.
      lia.
    }
    by apply: leq_trans; [apply: F | move: TSK ⇒ /eqP TSK; rewrite -TSK; lia].
  Qed.

End OverheadResourceModelValidSBF.