Library prosa.results.rta.arm.fp.fully_preemptive
Require Import prosa.analysis.facts.readiness.basic.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.task.preemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.preemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.sbf.average.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.task.preemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.preemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.sbf.average.
RTA for Fully Preemptive FP Scheduling on Uniprocessors under the Average Resource Model
Defining the System Model
- tasks, jobs, and their parameters,
 - the task set and the task under analysis,
 - the processor model,
 - the sequence of job arrivals,
 - the absence of self-suspensions,
 - an arbitrary schedule of the task set, and finally,
 - the resource-supply model.
 
Tasks and Jobs
... and their associated jobs, where each job has a corresponding task
      job_task, an execution time job_cost, and an arrival time
      job_arrival. 
Furthermore, assume that jobs and tasks are fully preemptive. 
  #[local] Existing Instance fully_preemptive_job_model.
#[local] Existing Instance fully_preemptive_task_model.
#[local] Existing Instance fully_preemptive_rtc_threshold.
#[local] Existing Instance fully_preemptive_task_model.
#[local] Existing Instance fully_preemptive_rtc_threshold.
  Context `{PState : ProcessorState Job}.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
The Job Arrival Sequence
  Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Absence of Self-Suspensions
The Schedule
  Context {FP : FP_policy Task}.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Consider a work-conserving, valid uniprocessor schedule that corresponds
      to the given arrival sequence arr_seq (and hence the given task set
      ts). 
  Variable sched : schedule PState.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
We assume that the schedule respects the given FP scheduling policy. 
Furthermore, we require that the schedule ensures that jobs of the same
      task are executed in the order of their arrival. 
Average Resource Model
[t1, t2), and given a
      resource period Π, a resource allocation time Θ, and a supply delay
      ν, the processor provides at least (t2 - t1 - ν) ⋅ Θ / Π units of
      supply. Intuitively, this means that on _average, the processor
      delivers Θ units of output every Π units of time, while the
      distribution of supply is not ideal and is subject to fluctuations bounded
      by ν. Furthermore, let arm_sbf Π Θ ν denote the SBF, which, as proven
      in prosa.analysis.facts.model.sbf.average, is a valid SBF. 
  Variables Π Θ ν : duration.
Hypothesis H_average_resource_model : average_resource_model Π Θ ν sched.
Hypothesis H_average_resource_model : average_resource_model Π Θ ν sched.
Maximum Length of a Busy Interval
  Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ arm_sbf Π Θ ν L ≥ total_hep_request_bound_function_FP ts tsk L.
L > 0
∧ arm_sbf Π Θ ν L ≥ total_hep_request_bound_function_FP ts tsk L.
Response-Time Bound
  Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
arm_sbf Π Θ ν F ≥ task_request_bound_function tsk (A + ε)
+ total_ohep_request_bound_function_FP ts tsk F
∧ A + R ≥ F.
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
arm_sbf Π Θ ν F ≥ task_request_bound_function tsk (A + ε)
+ total_ohep_request_bound_function_FP ts tsk F
∧ A + R ≥ F.
Finally, using the sequential variant of abstract restricted-supply
      analysis, we establish that, given a bound on the maximum busy-window
      length L, any such R is indeed a sound response-time bound for task
      tsk under fully-preemptive fixed-priority scheduling on a unit-speed
      uniprocessor under the average resource model. 
  Theorem uniprocessor_response_time_bound_fully_preemptive_fp :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have BLOCK: ∀ tsk , blocking_bound ts tsk = 0.
{ by move⇒ tsk2; rewrite /blocking_bound /parameters.task_max_nonpreemptive_segment
/fully_preemptive_task_model subnn big1_eq. }
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk (arm_sbf Π Θ ν).
{ by apply: valid_pred_sbf_switch_predicate; last apply arm_sbf_valid. }
have US : unit_supply_bound_function (arm_sbf Π Θ ν) by exact: arm_sbf_unit.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := arm_sbf Π Θ ν) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- apply instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := arm_sbf Π Θ ν) ⇒ //=.
+ exact: instantiated_i_and_w_are_coherent_with_schedule.
+ by rewrite BLOCK add0n.
- apply: valid_pred_sbf_switch_predicate; last first.
+ by apply arm_sbf_valid.
+ by move ⇒ ? ? ? ? [? ?]; split ⇒ //.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
{ by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence. }
apply: search_space_switch_IBF; last by exact: SP.
by move⇒ A1 Δ1; rewrite //= BLOCK.
+ move ⇒ F [FIX LE]; ∃ F; split ⇒ //.
rewrite /task_intra_IBF /task_rtct /fully_preemptive_rtc_threshold.
rewrite BLOCK subnn //= add0n addn0 subn0; split.
× by move: FIX; lia.
× exact: arm_sbf_monotone.
Qed.
End RTAforFullyPreemptiveFPModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have BLOCK: ∀ tsk , blocking_bound ts tsk = 0.
{ by move⇒ tsk2; rewrite /blocking_bound /parameters.task_max_nonpreemptive_segment
/fully_preemptive_task_model subnn big1_eq. }
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk (arm_sbf Π Θ ν).
{ by apply: valid_pred_sbf_switch_predicate; last apply arm_sbf_valid. }
have US : unit_supply_bound_function (arm_sbf Π Θ ν) by exact: arm_sbf_unit.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := arm_sbf Π Θ ν) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- apply instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := arm_sbf Π Θ ν) ⇒ //=.
+ exact: instantiated_i_and_w_are_coherent_with_schedule.
+ by rewrite BLOCK add0n.
- apply: valid_pred_sbf_switch_predicate; last first.
+ by apply arm_sbf_valid.
+ by move ⇒ ? ? ? ? [? ?]; split ⇒ //.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
{ by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence. }
apply: search_space_switch_IBF; last by exact: SP.
by move⇒ A1 Δ1; rewrite //= BLOCK.
+ move ⇒ F [FIX LE]; ∃ F; split ⇒ //.
rewrite /task_intra_IBF /task_rtct /fully_preemptive_rtc_threshold.
rewrite BLOCK subnn //= add0n addn0 subn0; split.
× by move: FIX; lia.
× exact: arm_sbf_monotone.
Qed.
End RTAforFullyPreemptiveFPModelwithArrivalCurves.