Library prosa.results.rta.ovh.edf.floating_nonpreemptive
Require Export prosa.model.job.properties.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.rtc_threshold.floating.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.edf.
Require Export prosa.analysis.abstract.restricted_supply.search_space.edf.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.priority.edf.
Require Export prosa.analysis.facts.blocking_bound.edf.
Require Export prosa.analysis.facts.workload.edf_athep_bound.
Require Export prosa.analysis.facts.model.overheads.sbf.jlfp.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.rtc_threshold.floating.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.edf.
Require Export prosa.analysis.abstract.restricted_supply.search_space.edf.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.priority.edf.
Require Export prosa.analysis.facts.blocking_bound.edf.
Require Export prosa.analysis.facts.workload.edf_athep_bound.
Require Export prosa.analysis.facts.model.overheads.sbf.jlfp.
RTA for EDF Scheduling with Floating Non-Preemptive Regions on Uniprocessors with Overheads
Defining the System Model
- the processor model,
 - tasks, jobs, and their parameters,
 - the task set and the task under analysis,
 - the sequence of job arrivals,
 - the absence of self-suspensions,
 - an arbitrary schedule of the task set, and finally,
 - an upper bound on overhead-induced delays.
 
Processor Model
Tasks and Jobs
  Context {Task : TaskType} `{TaskCost Task} `{TaskDeadline Task}
`{MaxArrivals Task} `{TaskMaxNonpreemptiveSegment Task}.
`{MaxArrivals Task} `{TaskMaxNonpreemptiveSegment Task}.
... and their associated jobs, where each job has a corresponding task
      job_task, an execution time job_cost, an arrival time job_arrival,
      and a list of preemption points job_preemptive_points. 
  Context {Job : JobType} `{JobTask Job Task} `{JobCost Job} `{JobArrival Job}
`{JobPreemptionPoints Job}.
`{JobPreemptionPoints Job}.
We assume that jobs are limited-preemptive. 
The Job Arrival Sequence
  Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Assume a model with floating non-preemptive regions. I.e., for each task
      only the length of the maximal non-preemptive segment is known and each
      job is divided into a number of non-preemptive segments by inserting
      preemption points. 
  Hypothesis H_valid_task_model_with_floating_nonpreemptive_regions :
valid_model_with_floating_nonpreemptive_regions arr_seq.
valid_model_with_floating_nonpreemptive_regions arr_seq.
Additionally, we assume that all jobs in arr_seq have positive execution
      costs. This requirement is not fundamental to the analysis approach itself
      but reflects an artifact of the current proof structure specific to upper
      bounds on the total duration of overheads. 
Absence of Self-Suspensions
The Schedule
  Variable sched : schedule (overheads.processor_state Job).
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_schedule_with_limited_preemptions :
schedule_respects_preemption_model arr_seq sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_schedule_with_limited_preemptions :
schedule_respects_preemption_model arr_seq sched.
We assume that the schedule respects the given EDF scheduling policy. 
Furthermore, we require that the schedule has no superfluous preemptions;
      that is, preemptions occur only when strictly required by the scheduling
      policy (specifically, a job is never preempted by another job of equal
      priority). 
Bounding the Total Overhead Duration
  Variable DB CSB CRPDB : duration.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
To conservatively account for the maximum cumulative delay that task tsk
      may experience due to scheduling overheads, we introduce an overhead
      bound. This term upper-bounds the maximum cumulative duration during
      which processor cycles are "lost" to dispatch, context-switch, and
      preemption-related delays in a given interval.
 
      For EDF scheduling, we use a generic JLFP bound, where the bound in an
      interval of length Δ is determined by the total number of arrivals in
      the system. In this case, up to n such arrivals can lead to at most 1 +
      2n segments without a schedule change, each potentially incurring
      dispatch, context-switch, and preemption-related overhead. 
Maximum Length of a Busy Interval
  Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ L ≥ overhead_bound L + total_request_bound_function ts L
∧ L ≥ overhead_bound L + longest_busy_interval_with_pi ts tsk.
L > 0
∧ L ≥ overhead_bound L + total_request_bound_function ts L
∧ L ≥ overhead_bound L + longest_busy_interval_with_pi ts tsk.
Response-Time Bound
  Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space ts tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ blocking_bound ts tsk A
+ task_request_bound_function tsk (A + ε)
+ bound_on_athep_workload ts tsk A F
∧ A + R ≥ F.
∀ (A : duration),
is_in_search_space ts tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ blocking_bound ts tsk A
+ task_request_bound_function tsk (A + ε)
+ bound_on_athep_workload ts tsk A F
∧ A + R ≥ F.
Finally, using the sequential variant of abstract restricted-supply
      analysis, we establish that, given a bound on the maximum busy-window
      length L, any such R is indeed a sound response-time bound for task
      tsk under EDF scheduling with floating non-preemptive regions on a
      unit-speed uniprocessor subject to scheduling overheads. 
  Theorem uniprocessor_response_time_bound_floating_edf :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
set (sSBF := jlfp_ovh_sbf_slow ts DB CSB CRPDB).
move⇒ L [BW_POS [BW_SOL1 BW_SOL2]] R SOL js ARRs TSKs.
have VAL1 : valid_preemption_model arr_seq sched
by apply valid_fixed_preemption_points_model_lemma, H_valid_task_model_with_floating_nonpreemptive_regions.
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- exact: EDF_implies_sequential_tasks.
- exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
- apply: busy_intervals_are_bounded_rs_edf ⇒ //.
+ by apply: instantiated_i_and_w_are_coherent_with_schedule.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
move ⇒ ? ? ? ? [? ?]; split ⇒ //.
by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by (apply: bound_on_athep_workload_is_valid; try apply H_fixed_point) ⇒ //.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by apply: nonpreemptive_segments_bounded_by_blocking ⇒ //.
- move⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move⇒ FF [FIX1 FIX2].
∃ FF; split; last split.
× lia.
× apply bound_preserved_under_slowed; move: FIX1.
by rewrite /task_intra_IBF /jlfp_blackout_bound /overhead_bound; lia.
× by rewrite subnn addn0; apply overheads_sbf_monotone; lia.
Qed.
End RTAforFloatingEDFModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
set (sSBF := jlfp_ovh_sbf_slow ts DB CSB CRPDB).
move⇒ L [BW_POS [BW_SOL1 BW_SOL2]] R SOL js ARRs TSKs.
have VAL1 : valid_preemption_model arr_seq sched
by apply valid_fixed_preemption_points_model_lemma, H_valid_task_model_with_floating_nonpreemptive_regions.
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- exact: EDF_implies_sequential_tasks.
- exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
- apply: busy_intervals_are_bounded_rs_edf ⇒ //.
+ by apply: instantiated_i_and_w_are_coherent_with_schedule.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
move ⇒ ? ? ? ? [? ?]; split ⇒ //.
by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by (apply: bound_on_athep_workload_is_valid; try apply H_fixed_point) ⇒ //.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by apply: nonpreemptive_segments_bounded_by_blocking ⇒ //.
- move⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move⇒ FF [FIX1 FIX2].
∃ FF; split; last split.
× lia.
× apply bound_preserved_under_slowed; move: FIX1.
by rewrite /task_intra_IBF /jlfp_blackout_bound /overhead_bound; lia.
× by rewrite subnn addn0; apply overheads_sbf_monotone; lia.
Qed.
End RTAforFloatingEDFModelwithArrivalCurves.