Library prosa.analysis.facts.model.sbf.periodic
Require Export prosa.model.priority.classes.
Require Export prosa.model.processor.supply.
Require Export prosa.model.processor.platform_properties.
Require Export prosa.analysis.definitions.sbf.plain.
Require Export prosa.analysis.definitions.sbf.periodic.
Require Export prosa.model.processor.supply.
Require Export prosa.model.processor.platform_properties.
Require Export prosa.analysis.definitions.sbf.plain.
Require Export prosa.analysis.definitions.sbf.periodic.
SBF for Periodic Resource Model in Valid
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any kind of unit-supply processor state model.
Context {PState : ProcessorState Job}.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Consider a JLFP policy, ...
... any arrival sequence, ...
... and any schedule.
Next, we prove a few properties required by aRSA-based analyses, in
particular that the SBF is valid.
We show that sbf is monotone.
The introduced SBF is also a unit-supply SBF.
In the following, we prove that the introduced SBF is valid.
We prove the validity claim via a case analysis on the interval for
which the SBF is computed. First, we consider an interval that falls
completely within a period
[kΠ, (k + 1)Π)
for some k.
Variable (k : nat) (q1 q2 : duration).
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Local Lemma prm_sbf_valid_aux_11 :
(q2 - q1) - (Π - γ) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
(q2 - q1) - (Π - γ) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
Let
[t1, t2)
:= [kΠ + q1, kΠ + q2)
be the interval under analysis.
By unfolding the expression for sbf and using the above
inequalities, we show that the supply during
[t1, t2)
is
indeed lower-bounded by sbf (t2-t1).
For the second case, consider an interval that touches at least two
periods. That is, consider an interval
[k1 Π + q1, k2 Π + q2)
for
some k1 < k2.
Variables (k1 k2 : nat) (q1 q2 : duration).
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_k1_lt_k2 : k1 < k2.
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_k1_lt_k2 : k1 < k2.
First, we show that the interval can be split into three
sub-intervals:
[k1 Π + q1, (k1 + 1) Π + q1)
,
[(k1 + 1) Π + q1, k2 Π)
, and [k2 Π, k2 Π + q2)
.
Lemma prm_sbf_valid_aux_21 :
supply_during sched (k1 × Π + q1) (k2 × Π + q2)
= supply_during sched (k1 × Π + q1) ((k1 + 1) × Π)
+ supply_during sched ((k1 + 1) × Π) (k2 × Π)
+ supply_during sched (k2 × Π) (k2 × Π + q2).
supply_during sched (k1 × Π + q1) (k2 × Π + q2)
= supply_during sched (k1 × Π + q1) ((k1 + 1) × Π)
+ supply_during sched ((k1 + 1) × Π) (k2 × Π)
+ supply_during sched (k2 × Π) (k2 × Π + q2).
In the following, we simply lower-bound the supply in each
of the three sub-intervals.
Supply in the interval
[k1 Π + q1, (k1 + 1) Π + q1)
is
lower-bounded by (Π - q1) - (Π - Θ).
Let
[t1, t2)
:= [k1 Π + q1, k2 Π + q2)
be the interval under analysis.
By unfolding the expression for sbf and using the above
inequalities, we show that the supply during
[t1, t2)
is indeed lower-bounded by sbf (t2-t1).
By using the two auxiliary lemmas above, we prove that sbf
is a valid SBF.
Lemma prm_sbf_valid :
valid_supply_bound_function arr_seq sched (prm_sbf Π γ).
End PeriodicResourceModelValidSBF.
valid_supply_bound_function arr_seq sched (prm_sbf Π γ).
End PeriodicResourceModelValidSBF.