Library prosa.model.priority.coercion
Automatic FP ➔ JLFP ➔ JLDP Conversion
#[global]
Instance FP_to_JLFP {Job : JobType} {Task : TaskType} {tasks : JobTask Job Task}
(FP : FP_policy Task) : JLFP_policy Job | 10 :=
fun j1 j2 ⇒ hep_task (job_task j1) (job_task j2).
Instance FP_to_JLFP {Job : JobType} {Task : TaskType} {tasks : JobTask Job Task}
(FP : FP_policy Task) : JLFP_policy Job | 10 :=
fun j1 j2 ⇒ hep_task (job_task j1) (job_task j2).
Second, any JLFP policy implies a JLDP policy that simply ignores the time
parameter. Analogously, priority is lowered to 10 in order to avoid conflict
with other instances of JLDP policies which take JLFP policies as argument.
#[global]
Instance JLFP_to_JLDP {Job : JobType}
(JLFP : JLFP_policy Job) : JLDP_policy Job | 10 :=
fun _ j1 j2 ⇒ hep_job j1 j2.
Instance JLFP_to_JLDP {Job : JobType}
(JLFP : JLFP_policy Job) : JLDP_policy Job | 10 :=
fun _ j1 j2 ⇒ hep_job j1 j2.
We now prove lemmas about conversions between the properties of these
priority classes.
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
To simplify later proofs, we make two trivial remarks on the
FP->JLFP->JLDP coercion.
First, when considering a JLFP policy, hep_job_at and hep_job are by
definition equivalent.
Second, when considering an FP policy, hep_job_at and hep_task are by
definition equivalent.
Remark hep_job_at_fp :
∀ `{FP_policy Task} j j' t,
hep_job_at t j j' = hep_task (job_task j) (job_task j').
∀ `{FP_policy Task} j j' t,
hep_job_at t j j' = hep_task (job_task j) (job_task j').
We observe that lifting an FP_policy to a JLFP_policy trivially maintains
reflexivity,...
Lemma reflexive_priorities_FP_implies_JLFP :
∀ (fp: FP_policy Task),
reflexive_task_priorities fp →
reflexive_job_priorities (FP_to_JLFP fp).
∀ (fp: FP_policy Task),
reflexive_task_priorities fp →
reflexive_job_priorities (FP_to_JLFP fp).
...transitivity,...
Lemma transitive_priorities_FP_implies_JLFP :
∀ (fp: FP_policy Task),
transitive_task_priorities fp →
transitive_job_priorities (FP_to_JLFP fp).
∀ (fp: FP_policy Task),
transitive_task_priorities fp →
transitive_job_priorities (FP_to_JLFP fp).
...and totality of priorities.
Lemma total_priorities_FP_implies_JLFP :
∀ (fp: FP_policy Task),
total_task_priorities fp →
total_job_priorities (FP_to_JLFP fp).
∀ (fp: FP_policy Task),
total_task_priorities fp →
total_job_priorities (FP_to_JLFP fp).
Analogously, lifting a JLFP_policy to a JLDP_policy also maintains
reflexivity,...
Lemma reflexive_priorities_JLFP_implies_JLDP :
∀ (jlfp: JLFP_policy Job),
reflexive_job_priorities jlfp →
reflexive_priorities (JLFP_to_JLDP jlfp).
∀ (jlfp: JLFP_policy Job),
reflexive_job_priorities jlfp →
reflexive_priorities (JLFP_to_JLDP jlfp).
...transitivity,...
Lemma transitive_priorities_JLFP_implies_JLDP :
∀ (jlfp : JLFP_policy Job),
transitive_job_priorities jlfp →
transitive_priorities (JLFP_to_JLDP jlfp).
∀ (jlfp : JLFP_policy Job),
transitive_job_priorities jlfp →
transitive_priorities (JLFP_to_JLDP jlfp).
...and totality of priorities.
Lemma total_priorities_JLFP_implies_JLDP :
∀ (jlfp : JLFP_policy Job),
total_job_priorities jlfp →
total_priorities (JLFP_to_JLDP jlfp).
End PriorityRelationsConversion.
∀ (jlfp : JLFP_policy Job),
total_job_priorities jlfp →
total_priorities (JLFP_to_JLDP jlfp).
End PriorityRelationsConversion.
We add the above lemmas into the "Hint Database" basic_rt_facts, so Coq
will be able to apply them automatically.
Global Hint Resolve
reflexive_priorities_FP_implies_JLFP
reflexive_priorities_JLFP_implies_JLDP
transitive_priorities_FP_implies_JLFP
transitive_priorities_JLFP_implies_JLDP
total_priorities_FP_implies_JLFP
total_priorities_JLFP_implies_JLDP
: basic_rt_facts.
reflexive_priorities_FP_implies_JLFP
reflexive_priorities_JLFP_implies_JLDP
transitive_priorities_FP_implies_JLFP
transitive_priorities_JLFP_implies_JLDP
total_priorities_FP_implies_JLFP
total_priorities_JLFP_implies_JLDP
: basic_rt_facts.