Library prosa.results.fixed_priority.rta.fully_nonpreemptive


(* ----------------------------------[ coqtop ]---------------------------------

Welcome to Coq 8.11.2 (June 2020)

----------------------------------------------------------------------------- *)


Require Export prosa.results.fixed_priority.rta.bounded_nps.
Require Export prosa.analysis.facts.preemption.task.nonpreemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.nonpreemptive.

From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.

RTA for Fully Non-Preemptive FP Model

In this module we prove the RTA theorem for the fully non-preemptive FP model.
Throughout this file, we assume the FP priority policy, ideal uni-processor schedules, and the basic (i.e., Liu & Layland) readiness model.
Furthermore, we assume the fully non-preemptive task model.

Setup and Assumptions

Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.

Consider any arrival sequence with consistent, non-duplicate arrivals.
Consider an arbitrary task set ts, ...
  Variable ts : list Task.

... assume that all jobs come from the task set, ...
... and the cost of a job cannot be larger than the task cost.
Let max_arrivals be a family of valid arrival curves, i.e., for any task [tsk] in ts [max_arrival tsk] is (1) an arrival bound of [tsk], and (2) it is a monotonic function that equals [0] for the empty interval [delta = 0].
Let [tsk] be any task in ts that is to be analyzed.
  Variable tsk : Task.
  Hypothesis H_tsk_in_ts : tsk \in ts.

Next, consider any ideal non-preemptive uniprocessor schedule of this arrival sequence ...
... where jobs do not execute before their arrival or after completion.
Consider an FP policy that indicates a higher-or-equal priority relation, and assume that the relation is reflexive and transitive.
Assume we have sequential tasks, i.e, tasks from the same task execute in the order of their arrival.
Next, we assume that the schedule is a work-conserving schedule ...
... and the schedule respects the policy defined by the [job_preemptable] function (i.e., jobs have bounded nonpreemptive segments).

Total Workload and Length of Busy Interval

We introduce the abbreviation [rbf] for the task request bound function, which is defined as [task_cost(T) × max_arrivals(T,Δ)] for a task T.
Next, we introduce [task_rbf] as an abbreviation for the task request bound function of task [tsk].
  Let task_rbf := rbf tsk.

Using the sum of individual request bound functions, we define the request bound function of all tasks with higher priority ...
... and the request bound function of all tasks with higher priority other than task [tsk].
Next, we define a bound for the priority inversion caused by tasks of lower priority.
Let L be any positive fixed point of the busy interval recurrence, determined by the sum of blocking and higher-or-equal-priority workload.
  Variable L : duration.
  Hypothesis H_L_positive : L > 0.
  Hypothesis H_fixed_point : L = blocking_bound + total_hep_rbf L.

Response-Time Bound

To reduce the time complexity of the analysis, recall the notion of search space.
Next, consider any value R, and assume that for any given arrival A from search space there is a solution of the response-time bound recurrence which is bounded by R.
  Variable R : duration.
  Hypothesis H_R_is_maximum:
     (A : duration),
      is_in_search_space A
       (F : duration),
        A + F = blocking_bound
                + (task_rbf (A + ε) - (task_cost tsk - ε))
                + total_ohep_rbf (A + F)
        F + (task_cost tsk - ε) R.

Now, we can leverage the results for the abstract model with bounded nonpreemptive segments to establish a response-time bound for the more concrete model of fully nonpreemptive scheduling.

  Let response_time_bounded_by := task_response_time_bound arr_seq sched.

  Theorem uniprocessor_response_time_bound_fully_nonpreemptive_fp:
    response_time_bounded_by tsk R.

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1899)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ============================
  response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


  Proof.
    move: (posnP (@task_cost _ H tsk)) ⇒ [ZERO|POS].

(* ----------------------------------[ coqtop ]---------------------------------

2 subgoals (ID 1916)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  ============================
  response_time_bounded_by tsk R

subgoal 2 (ID 1917) is:
 response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


    {
(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1916)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  ============================
  response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


intros j ARR TSK.

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1921)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  ============================
  job_response_time_bound sched j R

----------------------------------------------------------------------------- *)


      have ZEROj: job_cost j = 0.

(* ----------------------------------[ coqtop ]---------------------------------

2 subgoals (ID 1926)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  ============================
  job_cost j = 0

subgoal 2 (ID 1928) is:
 job_response_time_bound sched j R

----------------------------------------------------------------------------- *)


      {
(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1926)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  ============================
  job_cost j = 0

----------------------------------------------------------------------------- *)


move: (H_valid_job_cost j ARR) ⇒ NEQ.

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1930)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  NEQ : valid_job_cost j
  ============================
  job_cost j = 0

----------------------------------------------------------------------------- *)


        rewrite /valid_job_cost TSK ZERO in NEQ.

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1997)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  NEQ : job_cost j <= 0
  ============================
  job_cost j = 0

----------------------------------------------------------------------------- *)


          by apply/eqP; rewrite -leqn0.

(* ----------------------------------[ coqtop ]---------------------------------

2 subgoals (ID 1928)

subgoal 1 (ID 1928) is:
 job_response_time_bound sched j R
subgoal 2 (ID 1917) is:
 response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


      }

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1928)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  ZERO : task_cost tsk = 0
  j : Job
  ARR : arrives_in arr_seq j
  TSK : job_task j = tsk
  ZEROj : job_cost j = 0
  ============================
  job_response_time_bound sched j R

----------------------------------------------------------------------------- *)


        by rewrite /job_response_time_bound /completed_by ZEROj.

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1917)

subgoal 1 (ID 1917) is:
 response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


    }

(* ----------------------------------[ coqtop ]---------------------------------

1 subgoal (ID 1917)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  POS : 0 < task_cost tsk
  ============================
  response_time_bounded_by tsk R

----------------------------------------------------------------------------- *)


    eapply uniprocessor_response_time_bound_fp_with_bounded_nonpreemptive_segments with
        (L0 := L).

(* ----------------------------------[ coqtop ]---------------------------------

21 focused subgoals
(shelved: 1) (ID 2086)
  
  Task : TaskType
  H : TaskCost Task
  Job : JobType
  H0 : JobTask Job Task
  H1 : JobArrival Job
  H2 : JobCost Job
  arr_seq : arrival_sequence Job
  H_arrival_times_are_consistent : consistent_arrival_times arr_seq
  H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq
  ts : seq Task
  H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts
  H_valid_job_cost : arrivals_have_valid_job_costs arr_seq
  H3 : MaxArrivals Task
  H_valid_arrival_curve : valid_taskset_arrival_curve ts max_arrivals
  H_is_arrival_curve : taskset_respects_max_arrivals arr_seq ts
  tsk : Task
  H_tsk_in_ts : tsk \in ts
  sched : schedule (processor_state Job)
  H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched
                                        arr_seq
  H_nonpreemptive_sched : nonpreemptive_schedule sched
  H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched
  H_completed_jobs_dont_execute : completed_jobs_dont_execute sched
  H4 : FP_policy Task
  H_priority_is_reflexive : reflexive_priorities
  H_priority_is_transitive : transitive_priorities
  H_sequential_tasks : sequential_tasks arr_seq sched
  H_work_conserving : work_conserving arr_seq sched
  H_respects_policy : respects_policy_at_preemption_point arr_seq sched
  rbf := task_request_bound_function : Task -> duration -> nat
  task_rbf := rbf tsk : duration -> nat
  total_hep_rbf := total_hep_request_bound_function_FP ts tsk
   : duration -> nat
  total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk
   : duration -> nat
  blocking_bound := \max_(tsk_other <- ts | ~~ hep_task tsk_other tsk)
                       (task_cost tsk_other - ε) : nat
  L : duration
  H_L_positive : 0 < L
  H_fixed_point : L = blocking_bound + total_hep_rbf L
  is_in_search_space := bounded_pi.is_in_search_space tsk L : nat -> bool
  R : duration
  H_R_is_maximum : forall A : duration,
                   is_in_search_space A ->
                   exists F : duration,
                     A + F =
                     blocking_bound +
                     (task_rbf (A + ε) - (task_cost tsk - ε)) +
                     total_ohep_rbf (A + F) /\ F + (task_cost tsk - ε) <= R
  response_time_bounded_by := task_response_time_bound arr_seq sched
   : Task -> duration -> Prop
  POS : 0 < task_cost tsk
  ============================
  consistent_arrival_times arr_seq

subgoal 2 (ID 2087) is:
 arrival_sequence_uniq arr_seq
subgoal 3 (ID 2088) is:
 jobs_come_from_arrival_sequence sched arr_seq
subgoal 4 (ID 2089) is:
 jobs_must_arrive_to_execute sched
subgoal 5 (ID 2090) is:
 completed_jobs_dont_execute sched
subgoal 6 (ID 2091) is:
 valid_model_with_bounded_nonpreemptive_segments arr_seq sched
subgoal 7 (ID 2092) is:
 reflexive_priorities
subgoal 8 (ID 2093) is:
 transitive_priorities
subgoal 9 (ID 2094) is:
 sequential_tasks arr_seq sched
subgoal 10 (ID 2095) is:
 work_conserving arr_seq sched
subgoal 11 (ID 2096) is:
 respects_policy_at_preemption_point arr_seq sched
subgoal 12 (ID 2097) is:
 all_jobs_from_taskset arr_seq ?ts0
subgoal 13 (ID 2098) is:
 arrivals_have_valid_job_costs arr_seq
subgoal 14 (ID 2099) is:
 valid_taskset_arrival_curve ?ts0 max_arrivals
subgoal 15 (ID 2100) is:
 taskset_respects_max_arrivals arr_seq ?ts0
subgoal 16 (ID 2101) is:
 tsk \in ?ts0
subgoal 17 (ID 2102) is:
 valid_preemption_model arr_seq sched
subgoal 18 (ID 2103) is:
 valid_task_run_to_completion_threshold arr_seq tsk
subgoal 19 (ID 2104) is:
 0 < L
subgoal 20 (ID 2105) is:
 L =
 bounded_nps.blocking_bound ?ts0 tsk +
 total_hep_request_bound_function_FP ?ts0 tsk L
subgoal 21 (ID 2106) is:
 forall A : duration,
 bounded_pi.is_in_search_space tsk L A ->
 exists F : duration,
   A + F =
   bounded_nps.blocking_bound ?ts0 tsk +
   (task_request_bound_function tsk (A + ε) -
    (task_cost tsk - task_run_to_completion_threshold tsk)) +
   total_ohep_request_bound_function_FP ?ts0 tsk (A + F) /\
   F + (task_cost tsk - task_run_to_completion_threshold tsk) <= R

----------------------------------------------------------------------------- *)


    all: eauto 2 with basic_facts.
(* ----------------------------------[ coqtop ]---------------------------------

No more subgoals.

----------------------------------------------------------------------------- *)


  Qed.

End RTAforFullyNonPreemptiveFPModelwithArrivalCurves.