Library prosa.util.nat

From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div.
Require Export prosa.util.tactics prosa.util.ssrlia.

Additional lemmas about natural numbers.
Section NatLemmas.

First, we show that, given m1 m2 and n1 n2, an expression (m1 + n1) - (m2 + n2) can be transformed into expression (m1 - m2) + (n1 - n2).
  Lemma subnD:
     m1 m2 n1 n2,
      m1 m2
      n1 n2
      (m1 + n1) - (m2 + n2) = (m1 - m2) + (n1 - n2).

Next, we show that m + p n implies that m n - p. Note that this lemma is similar to ssreflect's lemma leq_subRL; however, the current lemma has no precondition n p, since it has only one direction.
  Lemma leq_subRL_impl:
     m n p,
      m + n p
      m p - n.

Simplify n + a - b + b - a = n if n b.
  Lemma subn_abba:
     n a b,
      n b
      n + a - b + b - a = n.

We can drop additive terms on the lesser side of an inequality.
  Lemma leq_addk:
     m n k,
      n + k m
      n m.

For any numbers a, b, and m, either there exists a number n such that m = a + n × b or m a + n × b for any n.
  Lemma exists_or_not_add_mul_cases:
     a b m,
      ( n, m = a + n × b)
      ( n, m a + n × b).

The expression n2 × a + b can be written as n1 × a + b + (n2 - n1) × a for any integer n1 such that n1 n2.
  Lemma add_mul_diff:
     n1 n2 a b,
      n1 n2
      n2 × a + b = n1 × a + b + (n2 - n1) × a.

Given constants a, b, c, z such that b a, if there is no constant m such that a = b + m × c, then it holds that there is no constant n such that a + z × c = b + n × c.
  Lemma mul_add_neq:
     a b c z,
      b a
      ( m, a b + m × c)
       n, a + z × c b + n × c.

End NatLemmas.

In this section, we prove a lemma about intervals of natural numbers.
Section Interval.

Trivially, points before the start of an interval, or past the end of an interval, are not included in the interval.
  Lemma point_not_in_interval:
     t1 t2 t',
      t2 t' t' < t1
       t,
        t1 t < t2
        t t'.

End Interval.

In the section, we introduce an additional lemma about relation < over natural numbers.
Section NatOrderLemmas.

  (* Mimic the way implicit arguments are used in ssreflect. *)
  Set Implicit Arguments.

  (* ltn_leq_trans: Establish that m < p if m < n and n p, to mirror the
     lemma leq_ltn_trans in ssrnat.

     NB: There is a good reason for this lemma to be "missing" in ssrnat --
     since m < n is defined as m.+1 nltn_leq_trans is just
     m.+1 n n p m.+1 p, that is @leq_trans n m.+1 p.

     Nonetheless we introduce it here because an additional (even though
     arguably redundant) lemma doesn't hurt, and for newcomers the apparent
     absence of the mirror case of leq_ltn_trans can be somewhat confusing.  *)

  Lemma ltn_leq_trans n m p : m < n n p m < p.

End NatOrderLemmas.