Library rt.restructuring.analysis.arrival.workload_bound
From rt.util Require Import sum.
From rt.restructuring.behavior Require Export all.
From rt.restructuring.model Require Import task schedule.priority_based.priorities.
From rt.restructuring.model.aggregate Require Import task_arrivals.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.analysis Require Import
workload ideal_schedule basic_facts.arrivals.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
From rt.restructuring.behavior Require Export all.
From rt.restructuring.model Require Import task schedule.priority_based.priorities.
From rt.restructuring.model.aggregate Require Import task_arrivals.
From rt.restructuring.model.arrival Require Import arrival_curves.
From rt.restructuring.analysis Require Import
workload ideal_schedule basic_facts.arrivals.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any arrival sequence with consistent, non-duplicate arrivals...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
... and any ideal uniprocessor schedule of this arrival sequence.
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
Consider an FP policy that indicates a higher-or-equal priority relation.
For simplicity, let's define some local names.
We define the notion of request bound function.
Let MaxArrivals denote any function that takes a task and an interval length
and returns the associated number of job arrivals of the task.
In this section, we define a bound for the workload of a single task
under uniprocessor FP scheduling.
Consider any task tsk that is to be scheduled in an interval of length delta.
We define the following workload bound for the task.
In this section, we define a bound for the workload of multiple tasks.
Consider a task set ts...
...and let tsk be any task in task set.
Let delta be the length of the interval of interest.
Recall the definition of higher-or-equal-priority task and
the per-task workload bound for FP scheduling.
Let is_hep_task tsk_other := higher_eq_priority tsk_other tsk.
Let is_other_hep_task tsk_other := higher_eq_priority tsk_other tsk && (tsk_other != tsk).
Let is_other_hep_task tsk_other := higher_eq_priority tsk_other tsk && (tsk_other != tsk).
Using the sum of individual workload bounds, we define the following bound
for the total workload of tasks in any interval of length delta.
Similarly, we define the following bound for the total workload of tasks of
higher-or-equal priority (with respect to tsk) in any interval of length delta.
Definition total_hep_request_bound_function_FP :=
\sum_(tsk_other <- ts | is_hep_task tsk_other)
task_request_bound_function tsk_other delta.
\sum_(tsk_other <- ts | is_hep_task tsk_other)
task_request_bound_function tsk_other delta.
We also define a bound for the total workload of higher-or-equal
priority tasks other than tsk in any interval of length delta.
Definition total_ohep_request_bound_function_FP :=
\sum_(tsk_other <- ts | is_other_hep_task tsk_other)
task_request_bound_function tsk_other delta.
End AllTasks.
End RequestBoundFunction.
\sum_(tsk_other <- ts | is_other_hep_task tsk_other)
task_request_bound_function tsk_other delta.
End AllTasks.
End RequestBoundFunction.
In this section we prove some lemmas about request bound functions.
Consider a task set ts...
...and let tsk be any task in ts.
Assume that the job costs are no larger than the task costs.
Next, we assume that all jobs come from the task set.
Let max_arrivals be any arrival bound for taskset ts.
Context `{MaxArrivals Task}.
Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts.
Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts.
Let's define some local names for clarity.
Let task_rbf := task_request_bound_function tsk.
Let total_rbf := total_request_bound_function ts.
Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk.
Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk.
Let total_rbf := total_request_bound_function ts.
Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk.
Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk.
Next, we consider any job j of tsk.
Variable j : Job.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Next, we say that two jobs j1 and j2 are in relation other_higher_eq_priority, iff
j1 has higher or equal priority than j2 and is produced by a different task.
Next, we recall the notions of total workload of jobs...
...notions of workload of higher or equal priority jobs...
Let total_hep_workload t1 t2 :=
workload_of_jobs (fun j_other ⇒ jlfp_higher_eq_priority j_other j) (arrivals_between t1 t2).
workload_of_jobs (fun j_other ⇒ jlfp_higher_eq_priority j_other j) (arrivals_between t1 t2).
... workload of other higher or equal priority jobs...
Let total_ohep_workload t1 t2 :=
workload_of_jobs (fun j_other ⇒ other_higher_eq_priority j_other j) (arrivals_between t1 t2).
workload_of_jobs (fun j_other ⇒ other_higher_eq_priority j_other j) (arrivals_between t1 t2).
... and the workload of jobs of the same task as job j.
In this section we prove that the workload of any jobs is
no larger than the request bound function.
Consider any time t and any interval of length delta.
First, we show that workload of task tsk is bounded by
the number of arrivals of the task times the cost of the task.
Lemma task_workload_le_num_of_arrivals_times_cost:
task_workload t (t + delta)
≤ task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta).
Proof.
rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter.
rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs.
rewrite /same_task -H_job_of_tsk muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto.
by apply H_job_cost_le_task_cost.
Qed.
task_workload t (t + delta)
≤ task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta).
Proof.
rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter.
rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs.
rewrite /same_task -H_job_of_tsk muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto.
by apply H_job_cost_le_task_cost.
Qed.
As a corollary, we prove that workload of task is
no larger the than task request bound function.
Corollary task_workload_le_task_rbf:
task_workload t (t + delta) ≤ task_rbf delta.
Proof.
apply leq_trans with
(task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta));
first by apply task_workload_le_num_of_arrivals_times_cost.
rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
Qed.
task_workload t (t + delta) ≤ task_rbf delta.
Proof.
apply leq_trans with
(task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta));
first by apply task_workload_le_num_of_arrivals_times_cost.
rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
Qed.
Next, we prove that total workload of other tasks with
higher-or-equal priority is no larger than the total
request bound function.
Lemma total_workload_le_total_rbf:
total_ohep_workload t (t + delta) ≤ total_ohep_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
set hep := higher_eq_priority.
apply leq_trans with
(\sum_(tsk' <- ts | hep tsk' tsk && (tsk' != tsk))
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ intros.
rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority.
rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep (job_task x) tsk && (job_task x != tsk)).
rewrite EXCHANGE /=; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite /workload_of_jobs.
rewrite muln1 /l /arrivals_between /arrival_sequence.arrivals_between.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
by rewrite -EQ; apply H_job_cost_le_task_cost; apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
total_ohep_workload t (t + delta) ≤ total_ohep_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
set hep := higher_eq_priority.
apply leq_trans with
(\sum_(tsk' <- ts | hep tsk' tsk && (tsk' != tsk))
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ intros.
rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority.
rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep (job_task x) tsk && (job_task x != tsk)).
rewrite EXCHANGE /=; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite /workload_of_jobs.
rewrite muln1 /l /arrivals_between /arrival_sequence.arrivals_between.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
by rewrite -EQ; apply H_job_cost_le_task_cost; apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
Next, we prove that total workload of tasks with higher-or-equal
priority is no larger than the total request bound function.
Lemma total_workload_le_total_rbf':
total_hep_workload t (t + delta) ≤ total_hep_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
set hep := higher_eq_priority.
apply leq_trans with
(n := \sum_(tsk' <- ts | hep tsk' tsk)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep (job_task x) tsk).
rewrite EXCHANGE /=; clear EXCHANGE; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_job_cost_le_task_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
total_hep_workload t (t + delta) ≤ total_hep_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
set hep := higher_eq_priority.
apply leq_trans with
(n := \sum_(tsk' <- ts | hep tsk' tsk)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep (job_task x) tsk).
rewrite EXCHANGE /=; clear EXCHANGE; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_job_cost_le_task_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
Next, we prove that total workload of tasks is
no larger than the total request bound function.
Lemma total_workload_le_total_rbf'':
total_workload t (t + delta) ≤ total_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_workload.
have EXCHANGE := exchange_big_dep predT.
rewrite EXCHANGE /=; clear EXCHANGE; last by done.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=.
rewrite eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0;
apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_job_cost_le_task_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
End WorkloadIsBoundedByRBF.
End ProofWorkloadBound.
End TaskWorkloadBoundedByArrivalCurves.
total_workload t (t + delta) ≤ total_rbf delta.
Proof.
set l := arrivals_between t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_workload.
have EXCHANGE := exchange_big_dep predT.
rewrite EXCHANGE /=; clear EXCHANGE; last by done.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=.
rewrite eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0;
apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_job_cost_le_task_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
End WorkloadIsBoundedByRBF.
End ProofWorkloadBound.
End TaskWorkloadBoundedByArrivalCurves.