Library prosa.analysis.facts.hyperperiod
Require Export prosa.analysis.definitions.hyperperiod.
Require Export prosa.analysis.facts.periodic.task_arrivals_size.
Require Export prosa.util.div_mod.
Require Export prosa.analysis.facts.periodic.task_arrivals_size.
Require Export prosa.util.div_mod.
In this file we prove some simple properties of hyperperiods of periodic tasks.
Consider any type of periodic tasks, ...
... any task set ts, ...
... and any task tsk that belongs to this task set.
A task set's hyperperiod is an integral multiple
of each task's period in the task set.
Lemma hyperperiod_int_mult_of_any_task:
∃ (k : nat),
hyperperiod ts = k × task_period tsk.
Proof. by apply/dvdnP; apply lcm_seq_is_mult_of_all_ints, map_f, H_tsk_in_ts. Qed.
End Hyperperiod.
∃ (k : nat),
hyperperiod ts = k × task_period tsk.
Proof. by apply/dvdnP; apply lcm_seq_is_mult_of_all_ints, map_f, H_tsk_in_ts. Qed.
End Hyperperiod.
In this section we show a property of hyperperiod in context
of task sets with valid periods.
Consider any type of periodic tasks ...
... and any task set ts ...
... such that all tasks in ts have valid periods.
We show that the hyperperiod of task set ts
is positive.
Lemma valid_periods_imply_pos_hp:
hyperperiod ts > 0.
Proof.
apply all_pos_implies_lcml_pos.
move ⇒ b /mapP [x IN EQ]; subst b.
now apply H_valid_periods.
Qed.
End ValidPeriodsImplyPositiveHP.
hyperperiod ts > 0.
Proof.
apply all_pos_implies_lcml_pos.
move ⇒ b /mapP [x IN EQ]; subst b.
now apply H_valid_periods.
Qed.
End ValidPeriodsImplyPositiveHP.
In this section we prove some lemmas about the hyperperiod
in context of the periodic model.
Consider any type of tasks, ...
... any type of jobs, ...
... and a consistent arrival sequence with non-duplicate arrivals.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
Variable tsk : Task.
Hypothesis H_task_in_ts: tsk \in ts.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_periodic_task: respects_periodic_task_model arr_seq tsk.
Hypothesis H_task_in_ts: tsk \in ts.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_periodic_task: respects_periodic_task_model arr_seq tsk.
Assume we have an infinite sequence of jobs in the arrival sequence.
Let O_max denote the maximum task offset in ts and let
HP denote the hyperperiod of all tasks in ts.
We show that the job corresponding to any job j1 in any other
hyperperiod is of the same task as j1.
Lemma corresponding_jobs_have_same_task:
∀ j1 j2,
job_task (corresponding_job_in_hyperperiod ts arr_seq j1
(starting_instant_of_corresponding_hyperperiod ts j2) (job_task j1)) = job_task j1.
Proof.
clear H_task_in_ts H_valid_period.
intros ×.
set ARRIVALS := (task_arrivals_between arr_seq (job_task j1) (starting_instant_of_hyperperiod ts (job_arrival j2))
(starting_instant_of_hyperperiod ts (job_arrival j2) + HP)).
set IND := (job_index_in_hyperperiod ts arr_seq j1 (starting_instant_of_hyperperiod ts (job_arrival j1)) (job_task j1)).
have SIZE_G : size ARRIVALS ≤ IND → job_task (nth j1 ARRIVALS IND) = job_task j1 by intro SG; rewrite nth_default.
case: (boolP (size ARRIVALS == IND)) ⇒ [/eqP EQ|NEQ]; first by apply SIZE_G; lia.
move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | G]; first by apply SIZE_G; lia.
set jb := nth j1 ARRIVALS IND.
have JOB_IN : jb \in ARRIVALS by apply mem_nth.
rewrite /ARRIVALS /task_arrivals_between mem_filter in JOB_IN.
now move : JOB_IN ⇒ /andP [/eqP TSK JB_IN].
Qed.
∀ j1 j2,
job_task (corresponding_job_in_hyperperiod ts arr_seq j1
(starting_instant_of_corresponding_hyperperiod ts j2) (job_task j1)) = job_task j1.
Proof.
clear H_task_in_ts H_valid_period.
intros ×.
set ARRIVALS := (task_arrivals_between arr_seq (job_task j1) (starting_instant_of_hyperperiod ts (job_arrival j2))
(starting_instant_of_hyperperiod ts (job_arrival j2) + HP)).
set IND := (job_index_in_hyperperiod ts arr_seq j1 (starting_instant_of_hyperperiod ts (job_arrival j1)) (job_task j1)).
have SIZE_G : size ARRIVALS ≤ IND → job_task (nth j1 ARRIVALS IND) = job_task j1 by intro SG; rewrite nth_default.
case: (boolP (size ARRIVALS == IND)) ⇒ [/eqP EQ|NEQ]; first by apply SIZE_G; lia.
move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | G]; first by apply SIZE_G; lia.
set jb := nth j1 ARRIVALS IND.
have JOB_IN : jb \in ARRIVALS by apply mem_nth.
rewrite /ARRIVALS /task_arrivals_between mem_filter in JOB_IN.
now move : JOB_IN ⇒ /andP [/eqP TSK JB_IN].
Qed.
We show that if a job j lies in the hyperperiod starting
at instant t then j arrives in the interval
[t, t + HP)
.
Lemma all_jobs_arrive_within_hyperperiod:
∀ j t,
j \in jobs_in_hyperperiod ts arr_seq t tsk→
t ≤ job_arrival j < t + HP.
Proof.
intros × JB_IN_HP.
rewrite mem_filter in JB_IN_HP.
move : JB_IN_HP ⇒ /andP [/eqP TSK JB_IN]; apply mem_bigcat_nat_exists in JB_IN.
destruct JB_IN as [i [JB_IN INEQ]]; apply H_consistent_arrivals in JB_IN.
now rewrite JB_IN.
Qed.
∀ j t,
j \in jobs_in_hyperperiod ts arr_seq t tsk→
t ≤ job_arrival j < t + HP.
Proof.
intros × JB_IN_HP.
rewrite mem_filter in JB_IN_HP.
move : JB_IN_HP ⇒ /andP [/eqP TSK JB_IN]; apply mem_bigcat_nat_exists in JB_IN.
destruct JB_IN as [i [JB_IN INEQ]]; apply H_consistent_arrivals in JB_IN.
now rewrite JB_IN.
Qed.
We show that the number of jobs in a hyperperiod starting at n1 × HP + O_max
is the same as the number of jobs in a hyperperiod starting at n2 × HP + O_max given
that n1 is less than or equal to n2.
Lemma eq_size_hyp_lt:
∀ n1 n2,
n1 ≤ n2 →
size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
Proof.
intros × N1_LT.
have → : n2 × HP + O_max = n1 × HP + O_max + (n2 - n1) × HP.
{ by rewrite -[in LHS](subnKC N1_LT) mulnDl addnAC. }
destruct (hyperperiod_int_mult_of_any_task ts tsk H_task_in_ts) as [k HYP]; rewrite !/HP.
rewrite [in X in _ = size (_ (n1 × HP + O_max + _ × X) tsk)]HYP.
rewrite mulnA /HP /jobs_in_hyperperiod !size_of_task_arrivals_between.
erewrite big_sum_eq_in_eq_sized_intervals ⇒ //; intros g G_LT.
have OFF_G : task_offset tsk ≤ O_max by apply max_offset_g.
have FG : ∀ v b n, v + b + n = v + n + b by intros *; lia.
erewrite eq_size_of_task_arrivals_seperated_by_period ⇒ //; last by lia.
now rewrite FG.
Qed.
∀ n1 n2,
n1 ≤ n2 →
size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
Proof.
intros × N1_LT.
have → : n2 × HP + O_max = n1 × HP + O_max + (n2 - n1) × HP.
{ by rewrite -[in LHS](subnKC N1_LT) mulnDl addnAC. }
destruct (hyperperiod_int_mult_of_any_task ts tsk H_task_in_ts) as [k HYP]; rewrite !/HP.
rewrite [in X in _ = size (_ (n1 × HP + O_max + _ × X) tsk)]HYP.
rewrite mulnA /HP /jobs_in_hyperperiod !size_of_task_arrivals_between.
erewrite big_sum_eq_in_eq_sized_intervals ⇒ //; intros g G_LT.
have OFF_G : task_offset tsk ≤ O_max by apply max_offset_g.
have FG : ∀ v b n, v + b + n = v + n + b by intros *; lia.
erewrite eq_size_of_task_arrivals_seperated_by_period ⇒ //; last by lia.
now rewrite FG.
Qed.
We generalize the above lemma by lifting the condition on
n1 and n2.
Lemma eq_size_of_arrivals_in_hyperperiod:
∀ n1 n2,
size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
Proof.
intros ×.
case : (boolP (n1 == n2)) ⇒ [/eqP EQ | NEQ]; first by rewrite EQ.
move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | LT].
+ now apply eq_size_hyp_lt ⇒ //; lia.
+ move : (eq_size_hyp_lt n2 n1) ⇒ EQ_S.
now feed_n 1 EQ_S ⇒ //; lia.
Qed.
∀ n1 n2,
size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
Proof.
intros ×.
case : (boolP (n1 == n2)) ⇒ [/eqP EQ | NEQ]; first by rewrite EQ.
move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | LT].
+ now apply eq_size_hyp_lt ⇒ //; lia.
+ move : (eq_size_hyp_lt n2 n1) ⇒ EQ_S.
now feed_n 1 EQ_S ⇒ //; lia.
Qed.
Consider any two jobs j1 and j2 that stem from the arrival sequence
arr_seq such that j1 is of task tsk.
Variable j1 : Job.
Variable j2 : Job.
Hypothesis H_j1_from_arr_seq: arrives_in arr_seq j1.
Hypothesis H_j2_from_arr_seq: arrives_in arr_seq j2.
Hypothesis H_j1_task: job_task j1 = tsk.
Variable j2 : Job.
Hypothesis H_j1_from_arr_seq: arrives_in arr_seq j1.
Hypothesis H_j2_from_arr_seq: arrives_in arr_seq j2.
Hypothesis H_j1_task: job_task j1 = tsk.
Hypothesis H_j1_arr_after_O_max: O_max ≤ job_arrival j1.
Hypothesis H_j2_arr_after_O_max: O_max ≤ job_arrival j2.
Hypothesis H_j2_arr_after_O_max: O_max ≤ job_arrival j2.
We show that any job j that arrives in task arrivals in the same
hyperperiod as j2 also arrives in task arrivals up to job_arrival j2 + HP.
Lemma job_in_hp_arrives_in_task_arrivals_up_to:
∀ j,
j \in jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk →
j \in task_arrivals_up_to arr_seq tsk (job_arrival j2 + HP).
Proof.
intros j J_IN.
rewrite /task_arrivals_up_to.
set jobs_in_hp := (jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk).
move : (J_IN) ⇒ J_ARR; apply all_jobs_arrive_within_hyperperiod in J_IN.
rewrite /jobs_in_hp /jobs_in_hyperperiod /task_arrivals_up_to /task_arrivals_between mem_filter in J_ARR.
move : J_ARR ⇒ /andP [/eqP TSK' NTH_IN].
apply job_in_task_arrivals_between ⇒ //; first by apply in_arrivals_implies_arrived in NTH_IN.
apply mem_bigcat_nat_exists in NTH_IN.
move : NTH_IN ⇒ [i [NJ_IN INEQ]]; apply H_consistent_arrivals in NJ_IN; rewrite -NJ_IN in INEQ.
apply /andP; split ⇒ //.
rewrite ltnS.
apply leq_trans with (n := (job_arrival j2 - O_max) %/ HP × HP + O_max + HP); first by lia.
rewrite leq_add2r.
have O_M : (job_arrival j2 - O_max) %/ HP × HP ≤ job_arrival j2 - O_max by apply leq_trunc_div.
have ARR_G : job_arrival j2 ≥ O_max by auto.
now lia.
Qed.
∀ j,
j \in jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk →
j \in task_arrivals_up_to arr_seq tsk (job_arrival j2 + HP).
Proof.
intros j J_IN.
rewrite /task_arrivals_up_to.
set jobs_in_hp := (jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk).
move : (J_IN) ⇒ J_ARR; apply all_jobs_arrive_within_hyperperiod in J_IN.
rewrite /jobs_in_hp /jobs_in_hyperperiod /task_arrivals_up_to /task_arrivals_between mem_filter in J_ARR.
move : J_ARR ⇒ /andP [/eqP TSK' NTH_IN].
apply job_in_task_arrivals_between ⇒ //; first by apply in_arrivals_implies_arrived in NTH_IN.
apply mem_bigcat_nat_exists in NTH_IN.
move : NTH_IN ⇒ [i [NJ_IN INEQ]]; apply H_consistent_arrivals in NJ_IN; rewrite -NJ_IN in INEQ.
apply /andP; split ⇒ //.
rewrite ltnS.
apply leq_trans with (n := (job_arrival j2 - O_max) %/ HP × HP + O_max + HP); first by lia.
rewrite leq_add2r.
have O_M : (job_arrival j2 - O_max) %/ HP × HP ≤ job_arrival j2 - O_max by apply leq_trunc_div.
have ARR_G : job_arrival j2 ≥ O_max by auto.
now lia.
Qed.
We show that job j1 arrives in its own hyperperiod.
Lemma job_in_own_hp:
j1 \in jobs_in_hyperperiod ts arr_seq ((job_arrival j1 - O_max) %/ HP × HP + O_max) tsk.
Proof.
apply job_in_task_arrivals_between ⇒ //.
apply /andP; split.
+ rewrite addnC -leq_subRL ⇒ //.
now apply leq_trunc_div.
+ specialize (div_floor_add_g (job_arrival j1 - O_max) HP) ⇒ AB.
feed_n 1 AB; first by apply valid_periods_imply_pos_hp ⇒ //.
rewrite ltn_subLR // in AB.
now rewrite -/(HP); lia.
Qed.
j1 \in jobs_in_hyperperiod ts arr_seq ((job_arrival j1 - O_max) %/ HP × HP + O_max) tsk.
Proof.
apply job_in_task_arrivals_between ⇒ //.
apply /andP; split.
+ rewrite addnC -leq_subRL ⇒ //.
now apply leq_trunc_div.
+ specialize (div_floor_add_g (job_arrival j1 - O_max) HP) ⇒ AB.
feed_n 1 AB; first by apply valid_periods_imply_pos_hp ⇒ //.
rewrite ltn_subLR // in AB.
now rewrite -/(HP); lia.
Qed.
We show that the corresponding_job_in_hyperperiod of j1 in j2's hyperperiod
arrives in task arrivals up to job_arrival j2 + HP.
Lemma corr_job_in_task_arrivals_up_to:
corresponding_job_in_hyperperiod ts arr_seq j1 (starting_instant_of_corresponding_hyperperiod ts j2) tsk \in
task_arrivals_up_to arr_seq tsk (job_arrival j2 + HP).
Proof.
rewrite /corresponding_job_in_hyperperiod /starting_instant_of_corresponding_hyperperiod.
rewrite /job_index_in_hyperperiod /starting_instant_of_hyperperiod /hyperperiod_index.
set ind := (index j1 (jobs_in_hyperperiod ts arr_seq ((job_arrival j1 - O_max) %/ HP × HP + O_max) tsk)).
set jobs_in_hp := (jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk).
set nj := nth j1 jobs_in_hp ind.
apply job_in_hp_arrives_in_task_arrivals_up_to ⇒ //.
rewrite mem_nth /jobs_in_hp ⇒ //.
specialize (eq_size_of_arrivals_in_hyperperiod ((job_arrival j2 - O_max) %/ HP) ((job_arrival j1 - O_max) %/ HP)) ⇒ EQ.
rewrite EQ /ind index_mem.
now apply job_in_own_hp.
Qed.
corresponding_job_in_hyperperiod ts arr_seq j1 (starting_instant_of_corresponding_hyperperiod ts j2) tsk \in
task_arrivals_up_to arr_seq tsk (job_arrival j2 + HP).
Proof.
rewrite /corresponding_job_in_hyperperiod /starting_instant_of_corresponding_hyperperiod.
rewrite /job_index_in_hyperperiod /starting_instant_of_hyperperiod /hyperperiod_index.
set ind := (index j1 (jobs_in_hyperperiod ts arr_seq ((job_arrival j1 - O_max) %/ HP × HP + O_max) tsk)).
set jobs_in_hp := (jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk).
set nj := nth j1 jobs_in_hp ind.
apply job_in_hp_arrives_in_task_arrivals_up_to ⇒ //.
rewrite mem_nth /jobs_in_hp ⇒ //.
specialize (eq_size_of_arrivals_in_hyperperiod ((job_arrival j2 - O_max) %/ HP) ((job_arrival j1 - O_max) %/ HP)) ⇒ EQ.
rewrite EQ /ind index_mem.
now apply job_in_own_hp.
Qed.
Finally, we show that the corresponding_job_in_hyperperiod of j1 in j2's hyperperiod
arrives in the arrival sequence arr_seq.
Lemma corresponding_job_arrives:
arrives_in arr_seq (corresponding_job_in_hyperperiod ts arr_seq j1 (starting_instant_of_corresponding_hyperperiod ts j2) tsk).
Proof.
move : (corr_job_in_task_arrivals_up_to) ⇒ ARR_G.
rewrite /task_arrivals_up_to /task_arrivals_between mem_filter in ARR_G.
move : ARR_G ⇒ /andP [/eqP TSK' NTH_IN].
now apply in_arrivals_implies_arrived in NTH_IN.
Qed.
End PeriodicLemmas.
arrives_in arr_seq (corresponding_job_in_hyperperiod ts arr_seq j1 (starting_instant_of_corresponding_hyperperiod ts j2) tsk).
Proof.
move : (corr_job_in_task_arrivals_up_to) ⇒ ARR_G.
rewrite /task_arrivals_up_to /task_arrivals_between mem_filter in ARR_G.
move : ARR_G ⇒ /andP [/eqP TSK' NTH_IN].
now apply in_arrivals_implies_arrived in NTH_IN.
Qed.
End PeriodicLemmas.