Library prosa.model.task.arrival.periodic_as_sporadic
Treating Periodic Tasks as Sporadic Tasks
Any type of periodic tasks ...
... and their corresponding jobs from a consistent arrival sequence with
non-duplicate arrivals ...
Context {Job : JobType} `{JobTask Job Task} `{JobArrival Job}.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
... may be interpreted as a type of sporadic tasks by using each task's
period as its minimum inter-arrival time ...
Global Instance periodic_as_sporadic : SporadicModel Task :=
{
task_min_inter_arrival_time := task_period
}.
{
task_min_inter_arrival_time := task_period
}.
... such that the model interpretation is valid, both w.r.t. the minimum
inter-arrival time parameter ...
Remark valid_period_is_valid_inter_arrival_time:
∀ tsk, valid_period tsk → valid_task_min_inter_arrival_time tsk.
Proof. trivial. Qed.
∀ tsk, valid_period tsk → valid_task_min_inter_arrival_time tsk.
Proof. trivial. Qed.
... and the separation of job arrivals.
Remark periodic_task_respects_sporadic_task_model:
∀ tsk, valid_period tsk →
respects_periodic_task_model arr_seq tsk →
respects_sporadic_task_model arr_seq tsk.
Proof.
intros tsk VALID_PERIOD H_PERIODIC j1 j2 NEQ ARR ARR' TSK TSK' ARR_LT.
rewrite /task_min_inter_arrival_time /periodic_as_sporadic.
have IND_LT : job_index arr_seq j1 < job_index arr_seq j2.
{ rewrite → diff_jobs_iff_diff_indices in NEQ ⇒ //; eauto; last by rewrite TSK.
move_neq_up IND_LTE; move_neq_down ARR_LT.
specialize (H_PERIODIC j1); feed_n 3 H_PERIODIC ⇒ //; try by lia.
move : H_PERIODIC ⇒ [pj [ARR_PJ [IND_PJ [TSK_PJ PJ_ARR]]]].
have JB_IND_LTE : job_index arr_seq j2 ≤ job_index arr_seq pj by lia.
apply index_lte_implies_arrival_lte in JB_IND_LTE ⇒ //; try by rewrite TSK_PJ.
rewrite PJ_ARR.
have POS_PERIOD : task_period tsk > 0 by auto.
now lia. }
specialize (H_PERIODIC j2); feed_n 3 H_PERIODIC ⇒ //; try by lia.
move: H_PERIODIC ⇒ [pj [ARR_PJ [IND_PJ [TSK_PJ PJ_ARR]]]].
have JB_IND_LTE : job_index arr_seq j1 ≤ job_index arr_seq pj by lia.
apply index_lte_implies_arrival_lte in JB_IND_LTE ⇒ //; try by rewrite TSK_PJ.
now rewrite PJ_ARR; lia.
Qed.
∀ tsk, valid_period tsk →
respects_periodic_task_model arr_seq tsk →
respects_sporadic_task_model arr_seq tsk.
Proof.
intros tsk VALID_PERIOD H_PERIODIC j1 j2 NEQ ARR ARR' TSK TSK' ARR_LT.
rewrite /task_min_inter_arrival_time /periodic_as_sporadic.
have IND_LT : job_index arr_seq j1 < job_index arr_seq j2.
{ rewrite → diff_jobs_iff_diff_indices in NEQ ⇒ //; eauto; last by rewrite TSK.
move_neq_up IND_LTE; move_neq_down ARR_LT.
specialize (H_PERIODIC j1); feed_n 3 H_PERIODIC ⇒ //; try by lia.
move : H_PERIODIC ⇒ [pj [ARR_PJ [IND_PJ [TSK_PJ PJ_ARR]]]].
have JB_IND_LTE : job_index arr_seq j2 ≤ job_index arr_seq pj by lia.
apply index_lte_implies_arrival_lte in JB_IND_LTE ⇒ //; try by rewrite TSK_PJ.
rewrite PJ_ARR.
have POS_PERIOD : task_period tsk > 0 by auto.
now lia. }
specialize (H_PERIODIC j2); feed_n 3 H_PERIODIC ⇒ //; try by lia.
move: H_PERIODIC ⇒ [pj [ARR_PJ [IND_PJ [TSK_PJ PJ_ARR]]]].
have JB_IND_LTE : job_index arr_seq j1 ≤ job_index arr_seq pj by lia.
apply index_lte_implies_arrival_lte in JB_IND_LTE ⇒ //; try by rewrite TSK_PJ.
now rewrite PJ_ARR; lia.
Qed.
For convenience, we state these obvious correspondences also at the level
of entire task sets.
First, we show that all tasks in a task set with valid periods
also have valid min inter-arrival times.
Remark valid_periods_are_valid_inter_arrival_times :
∀ ts, valid_periods ts → valid_taskset_inter_arrival_times ts.
Proof. trivial. Qed.
∀ ts, valid_periods ts → valid_taskset_inter_arrival_times ts.
Proof. trivial. Qed.
Second, we show that each task in a periodic task set respects
the sporadic task model.
Remark periodic_task_sets_respect_sporadic_task_model :
∀ ts,
valid_periods ts →
taskset_respects_periodic_task_model arr_seq ts →
taskset_respects_sporadic_task_model ts arr_seq.
Proof.
intros ts VALID_PERIODS H_PERIODIC tsk TSK_IN.
specialize (H_PERIODIC tsk TSK_IN).
apply periodic_task_respects_sporadic_task_model ⇒ //.
now apply VALID_PERIODS.
Qed.
End PeriodicTasksAsSporadicTasks.
∀ ts,
valid_periods ts →
taskset_respects_periodic_task_model arr_seq ts →
taskset_respects_sporadic_task_model ts arr_seq.
Proof.
intros ts VALID_PERIODS H_PERIODIC tsk TSK_IN.
specialize (H_PERIODIC tsk TSK_IN).
apply periodic_task_respects_sporadic_task_model ⇒ //.
now apply VALID_PERIODS.
Qed.
End PeriodicTasksAsSporadicTasks.
We add the lemmas into the "Hint Database" basic_rt_facts so that
they become available for proof automation.
Global Hint Resolve
periodic_task_respects_sporadic_task_model
valid_period_is_valid_inter_arrival_time
valid_periods_are_valid_inter_arrival_times
periodic_task_sets_respect_sporadic_task_model
: basic_rt_facts.
periodic_task_respects_sporadic_task_model
valid_period_is_valid_inter_arrival_time
valid_periods_are_valid_inter_arrival_times
periodic_task_sets_respect_sporadic_task_model
: basic_rt_facts.