Project Page
Index
Table of Contents
Library prosa.util.option
From
mathcomp
Require
Import
ssreflect
ssrbool
eqtype
ssrnat
seq
fintype
bigop
path
.
Definitions for working with option types
Unwraps a natural number out of an
option
nat
.
Definition
unwrap
(
opt
:
option
nat
) :=
if
opt
is
Some
x
then
x
else
0.
We proof, that
Some
is an inverse to
unwrap
if the number is not
None
.
Lemma
unwrap_inv
:
∀
o
:
option
nat
,
o
!=
None
→
Some
(
unwrap
o
)
=
o
.
Proof
.
move
⇒
o
;
case
o
⇒ //.
Qed
.