Library prosa.analysis.facts.shifted_job_costs
Require Export prosa.analysis.facts.periodic.arrival_times.
Require Export prosa.analysis.facts.periodic.task_arrivals_size.
Require Export prosa.model.task.concept.
Require Export prosa.analysis.facts.hyperperiod.
Require Export prosa.analysis.facts.periodic.task_arrivals_size.
Require Export prosa.model.task.concept.
Require Export prosa.analysis.facts.hyperperiod.
In this file we define a new function for job costs
in an observation interval and prove its validity.
Consider any type of periodic tasks ...
Context {Task : TaskType}.
Context `{TaskOffset Task}.
Context `{PeriodicModel Task}.
Context `{TaskCost Task}.
Context `{TaskOffset Task}.
Context `{PeriodicModel Task}.
Context `{TaskCost Task}.
... and any type of jobs.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobDeadline Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobDeadline Job}.
Consider a consistent arrival sequence with non-duplicate arrivals.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
Hypothesis H_consistent_arrivals: consistent_arrival_times arr_seq.
Hypothesis H_uniq_arr_seq: arrival_sequence_uniq arr_seq.
Furthermore, assume that arrivals have valid job costs.
Variable ts : TaskSet Task.
Hypothesis H_periodic_taskset: taskset_respects_periodic_task_model arr_seq ts.
Hypothesis H_valid_periods_in_taskset: valid_periods ts.
Hypothesis H_valid_offsets_in_taskset: valid_offsets arr_seq ts.
Hypothesis H_periodic_taskset: taskset_respects_periodic_task_model arr_seq ts.
Hypothesis H_valid_periods_in_taskset: valid_periods ts.
Hypothesis H_valid_offsets_in_taskset: valid_offsets arr_seq ts.
Consider a job j that stems from the arrival sequence.
We now define a new function for job costs in the observation interval.
Given that job j arrives after O_max, the cost of a job j'
that arrives in the interval
[O_max + HP, O_max + 2HP)
is defined to
be the same as the job cost of its corresponding job in j's hyperperiod.
Definition job_costs_shifted (j' : Job) :=
if (job_arrival j ≥ O_max) && (O_max + HP ≤ job_arrival j' < O_max + 2 × HP) then
job_cost (corresponding_job_in_hyperperiod ts arr_seq j' (starting_instant_of_corresponding_hyperperiod ts j) (job_task j'))
else job_cost j'.
if (job_arrival j ≥ O_max) && (O_max + HP ≤ job_arrival j' < O_max + 2 × HP) then
job_cost (corresponding_job_in_hyperperiod ts arr_seq j' (starting_instant_of_corresponding_hyperperiod ts j) (job_task j'))
else job_cost j'.
Assume that we have an infinite sequence of jobs.
We assign the job costs as defined by the job_costs_shifted function.
We show that the job_costs_shifted function is valid.