Library prosa.results.ovh.edf.fully_nonpreemptive
Require Export prosa.model.job.properties.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.task.nonpreemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.nonpreemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.edf.
Require Export prosa.analysis.abstract.restricted_supply.search_space.edf.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.priority.edf.
Require Export prosa.analysis.facts.blocking_bound.edf.
Require Export prosa.analysis.facts.workload.edf_athep_bound.
Require Export prosa.analysis.facts.model.overheads.sbf.jlfp.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.task.nonpreemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.nonpreemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.edf.
Require Export prosa.analysis.abstract.restricted_supply.search_space.edf.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.priority.edf.
Require Export prosa.analysis.facts.blocking_bound.edf.
Require Export prosa.analysis.facts.workload.edf_athep_bound.
Require Export prosa.analysis.facts.model.overheads.sbf.jlfp.
RTA for Fully Non-Preemptive EDF Scheduling on Uniprocessors with Overheads
Defining the System Model
- the processor model,
- tasks, jobs, and their parameters,
- the task set and the task under analysis,
- the sequence of job arrivals,
- the absence of self-suspensions,
- an arbitrary schedule of the task set, and finally,
- an upper bound on overhead-induced delays.
Processor Model
Tasks and Jobs
... and their associated jobs, where each job has a corresponding task
job_task, an execution time job_cost, and an arrival time
job_arrival.
Furthermore, assume that jobs and tasks are fully non-preemptive.
#[local] Existing Instance fully_nonpreemptive_job_model.
#[local] Existing Instance fully_nonpreemptive_task_model.
#[local] Existing Instance fully_nonpreemptive_rtc_threshold.
#[local] Existing Instance fully_nonpreemptive_task_model.
#[local] Existing Instance fully_nonpreemptive_rtc_threshold.
The Job Arrival Sequence
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Additionally, we assume that all jobs in arr_seq have positive execution
costs. This requirement is not fundamental to the analysis approach itself
but reflects an artifact of the current proof structure specific to upper
bounds on the total duration of overheads.
Absence of Self-Suspensions
The Schedule
Variable sched : schedule (overheads.processor_state Job).
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_nonpreemptive_sched : nonpreemptive_schedule sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_nonpreemptive_sched : nonpreemptive_schedule sched.
We assume that the schedule respects the given EDF scheduling policy.
Furthermore, we require that the schedule has no superfluous preemptions;
that is, preemptions occur only when strictly required by the scheduling
policy (specifically, a job is never preempted by another job of equal
priority).
Bounding the Total Overhead Duration
Variable DB CSB CRPDB : duration.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
To conservatively account for the maximum cumulative delay that task tsk
may experience due to scheduling overheads, we introduce an overhead
bound. This term upper-bounds the maximum cumulative duration during
which processor cycles are "lost" to dispatch, context-switch, and
preemption-related delays in a given interval.
For EDF scheduling, we use a generic JLFP bound, where the bound in an
interval of length Δ is determined by the total number of arrivals in
the system. In this case, up to n such arrivals can lead to at most 1 +
2n segments without a schedule change, each potentially incurring
dispatch, context-switch, and preemption-related overhead.
Maximum Length of a Busy Interval
Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ L ≥ overhead_bound L + total_request_bound_function ts L
∧ L ≥ overhead_bound L + longest_busy_interval_with_pi ts tsk.
L > 0
∧ L ≥ overhead_bound L + total_request_bound_function ts L
∧ L ≥ overhead_bound L + longest_busy_interval_with_pi ts tsk.
Response-Time Bound
Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space ts tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ blocking_bound ts tsk A
+ (task_request_bound_function tsk (A + ε) - (task_cost tsk - ε))
+ bound_on_athep_workload ts tsk A F
∧ A + R ≥ F + (overhead_bound (A + R) - overhead_bound F)
+ (task_cost tsk - ε).
∀ (A : duration),
is_in_search_space ts tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ blocking_bound ts tsk A
+ (task_request_bound_function tsk (A + ε) - (task_cost tsk - ε))
+ bound_on_athep_workload ts tsk A F
∧ A + R ≥ F + (overhead_bound (A + R) - overhead_bound F)
+ (task_cost tsk - ε).
Finally, using the sequential variant of abstract restricted-supply
analysis, we establish that, given a bound on the maximum busy-window
length L, any such R is indeed a sound response-time bound for task
tsk under fully non-preemptive EDF scheduling on a unit-speed
uniprocessor subject to scheduling overheads.
Theorem uniprocessor_response_time_bound_fully_nonpreemptive_edf :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS [BW_SOL1 BW_SOL2]] R SOL js ARRs TSKs; set (sSBF := jlfp_ovh_sbf_slow ts DB CSB CRPDB).
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VMBNS : valid_model_with_bounded_nonpreemptive_segments arr_seq sched
by apply fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions ⇒ //.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- exact: EDF_implies_sequential_tasks.
- exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
- apply: busy_intervals_are_bounded_rs_edf ⇒ //.
+ by apply: instantiated_i_and_w_are_coherent_with_schedule.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
by move ⇒ ? ? ? ? [? ?]; split ⇒ //; apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by (apply: bound_on_athep_workload_is_valid; try apply H_fixed_point) ⇒ //.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by apply: nonpreemptive_segments_bounded_by_blocking ⇒ //.
- move⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move ⇒ F [FIX1 FIX2].
have [δ [LEδ EQ]]:= slowed_subtraction_value_preservation
(jlfp_blackout_bound ts DB CSB CRPDB) F (ltac:(apply jlfp_blackout_bound_monotone ⇒ //)).
∃ δ; split; [lia | split].
× rewrite /sSBF /jlfp_ovh_sbf_slow -EQ.
apply: leq_trans; last by apply leq_subRL_impl; rewrite -!addnA in FIX1; apply FIX1.
have NEQ: bound_on_athep_workload ts tsk A δ ≤ bound_on_athep_workload ts tsk A F
by apply bound_on_athep_workload_monotone.
by move: FIX1; rewrite /task_intra_IBF; set (c := _ _ (A +1) - ( _ )); lia.
× rewrite /sSBF /jlfp_ovh_sbf_slow -EQ.
apply bound_preserved_under_slowed, leq_subRL_impl; apply: leq_trans; last by apply FIX2.
move: FIX1; rewrite /task_rtct /fully_nonpreemptive_rtc_threshold /constant
/jlfp_blackout_bound /overhead_bound; lia.
Qed.
End RTAforFullyNonPreemptiveEDFModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS [BW_SOL1 BW_SOL2]] R SOL js ARRs TSKs; set (sSBF := jlfp_ovh_sbf_slow ts DB CSB CRPDB).
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VMBNS : valid_model_with_bounded_nonpreemptive_segments arr_seq sched
by apply fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions ⇒ //.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- exact: EDF_implies_sequential_tasks.
- exact: instantiated_interference_and_workload_consistent_with_sequential_tasks.
- apply: busy_intervals_are_bounded_rs_edf ⇒ //.
+ by apply: instantiated_i_and_w_are_coherent_with_schedule.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
+ by apply bound_preserved_under_slowed; unfold jlfp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
by move ⇒ ? ? ? ? [? ?]; split ⇒ //; apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by (apply: bound_on_athep_workload_is_valid; try apply H_fixed_point) ⇒ //.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by apply: nonpreemptive_segments_bounded_by_blocking ⇒ //.
- move⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move ⇒ F [FIX1 FIX2].
have [δ [LEδ EQ]]:= slowed_subtraction_value_preservation
(jlfp_blackout_bound ts DB CSB CRPDB) F (ltac:(apply jlfp_blackout_bound_monotone ⇒ //)).
∃ δ; split; [lia | split].
× rewrite /sSBF /jlfp_ovh_sbf_slow -EQ.
apply: leq_trans; last by apply leq_subRL_impl; rewrite -!addnA in FIX1; apply FIX1.
have NEQ: bound_on_athep_workload ts tsk A δ ≤ bound_on_athep_workload ts tsk A F
by apply bound_on_athep_workload_monotone.
by move: FIX1; rewrite /task_intra_IBF; set (c := _ _ (A +1) - ( _ )); lia.
× rewrite /sSBF /jlfp_ovh_sbf_slow -EQ.
apply bound_preserved_under_slowed, leq_subRL_impl; apply: leq_trans; last by apply FIX2.
move: FIX1; rewrite /task_rtct /fully_nonpreemptive_rtc_threshold /constant
/jlfp_blackout_bound /overhead_bound; lia.
Qed.
End RTAforFullyNonPreemptiveEDFModelwithArrivalCurves.