# Library prosa.util.bigcat

Require Export mathcomp.zify.zify.
Require Export prosa.util.tactics prosa.util.notation.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Require Export prosa.util.tactics prosa.util.list.

In this section, we introduce lemmas about the concatenation operation performed over arbitrary sequences.
Section BigCatNatLemmas.

Consider any type T supporting equality comparisons...
Variable T : eqType.

...and a function f that, given an index, yields a sequence.
Variable f : nat seq T.

In this section, we prove that the concatenation over sequences works as expected: no element is lost during the concatenation, and no new element is introduced.
Section BigCatNatElements.

First, we show that the concatenation comprises all the elements of each sequence; i.e. any element contained in one of the sequences will also be an element of the result of the concatenation.
Lemma mem_bigcat_nat :
x m n j,
m j < n
x \in f j
x \in \cat_(m i < n) (f i).
Proof.
intros x m n j LE IN; move: LE ⇒ /andP [LE LE0].
rewritebig_cat_nat with (n := j); simpl; [| by ins | by apply ltnW].
rewrite mem_cat; apply/orP; right.
destruct n; first by rewrite ltn0 in LE0.
rewrite big_nat_recl; last by ins.
by rewrite mem_cat; apply/orP; left.
Qed.

Conversely, we prove that any element belonging to a concatenation of sequences must come from one of the sequences.
Lemma mem_bigcat_nat_exists :
x m n,
x \in \cat_(m i < n) (f i)
i,
x \in f i m i < n.
Proof.
intros x m n IN.
induction n; first by rewrite big_geq // in IN.
destruct (leqP m n); last by rewrite big_geq ?in_nil // ltnW in IN.
rewrite big_nat_recr // /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
move: H ⇒ [H /andP [H0 H1]].
split; first by done.
by apply/andP; split; last by apply ltnW.
- n; split; first by done.
by apply/andP; split; last apply ltnSn.
Qed.

We also restate lemma mem_bigcat_nat in terms of ordinals.
Lemma mem_bigcat_ord :
(x : T) (n : nat) (j : 'I_n) (f : 'I_n seq T),
j < n
x \in (f j)
x \in \cat_(i < n) (f i).
Proof.
movex; elim⇒ [//|n IHn] j f' Hj Hx.
rewrite big_ord_recr /= mem_cat; apply /orP.
move: Hj; rewrite ltnS leq_eqVlt ⇒ /orP [/eqP Hj|Hj].
- by right; rewrite (_ : ord_max = j); [|apply ord_inj].
- left.
apply (IHn (Ordinal Hj)); [by []|].
by set j' := widen_ord _ _; have → : j' = j; [apply ord_inj|].
Qed.

End BigCatNatElements.

In this section, we show how we can preserve uniqueness of the elements (i.e. the absence of a duplicate) over a concatenation of sequences.
Assume that there are no duplicates in each of the possible sequences to concatenate...
Hypothesis H_uniq_seq : i, uniq (f i).

...and that there are no elements in common between the sequences.
Hypothesis H_no_elements_in_common :
x i1 i2, x \in f i1 x \in f i2 i1 = i2.

We prove that the concatenation will yield a sequence with unique elements.
Lemma bigcat_nat_uniq :
n1 n2,
uniq (\cat_(n1 i < n2) (f i)).
Proof.
intros n1 n2.
case (leqP n1 n2) ⇒ [LE | GT]; last by rewrite big_geq // ltnW.
rewrite -addnBA //; set delta := n2 - n1.
induction delta; first by rewrite addn0 big_geq.
rewrite cat_uniq; apply/andP; split; first by apply IHdelta.
apply /andP; split; last by apply H_uniq_seq.
rewrite -all_predC; apply/allP; intros x INx.
simpl; apply/negP; unfold not; intro BUG.
apply mem_bigcat_nat_exists in BUG.
move: BUG ⇒ [i [IN /andP [_ LTi]]].
apply H_no_elements_in_common with (i1 := i) in INx; last by done.
by rewrite INx ltnn in LTi.
Qed.

Conversely, if the concatenation of the sequences has no duplicates, any element can only belong to a single sequence.
Lemma bigcat_ord_uniq_reverse :
(n : nat) (f : 'I_n seq T),
uniq (\cat_(i < n) (f i))
( x i1 i2,
x \in (f i1) x \in (f i2) i1 = i2).
Proof.
case⇒ [|n]; [by movef' Huniq x; case|].
elim: n ⇒ [|n IHn] f' Huniq x i1 i2 Hi1 Hi2.
{ move: i1 i2 {Hi1 Hi2}; case; case⇒ [i1|//]; case; case⇒ [i2|//].
apply f_equal, eq_irrelevance. }
move: (leq_ord i1); rewrite leq_eqVlt ⇒ /orP [H'i1|H'i1].
all: move: (leq_ord i2); rewrite leq_eqVlt ⇒ /orP [H'i2|H'i2].
{ by apply ord_inj; move: H'i1 H'i2 ⇒ /eqP → /eqP →. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; x ⇒ /=.
{ set o := ord_max; suff → : o = i1; [by []|].
by apply ord_inj; move: H'i1 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i2)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i2; [|apply ord_inj]. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; x ⇒ /=.
{ set o := ord_max; suff → : o = i2; [by []|].
by apply ord_inj; move: H'i2 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i1)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i1; [|apply ord_inj]. }
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [Huniq _].
apply ord_inj; rewrite -(inordK H'i1) -(inordK H'i2); apply f_equal.
apply (IHn _ Huniq x).
{ set i1' := widen_ord _ _; suff → : i1' = i1; [by []|].
by apply ord_inj; rewrite /= inordK. }
set i2' := widen_ord _ _; suff → : i2' = i2; [by []|].
by apply ord_inj; rewrite /= inordK.
Qed.

End BigCatNatDistinctElements.

We show that filtering a concatenated sequence by any predicate P is the same as concatenating the elements of the sequence that satisfy P.
Lemma bigcat_nat_filter_eq_filter_bigcat_nat :
{X : Type} (F : nat seq X) (P : X bool) (t1 t2 : nat),
[seq x <- \cat_(t1 t < t2) F t | P x] = \cat_(t1 t < t2)[seq x <- F t | P x].
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
+ have EX: Δ, t2 = t1 + Δ by simpl; (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
rewrite filter_cat IHΔ ⇒ //.
by lia. }
+ by rewrite !big_geq ⇒ //.
Qed.

We show that the size of a concatenated sequence is the same as summation of sizes of each element of the sequence.
Lemma size_big_nat :
{X : Type} (F : nat seq X) (t1 t2 : nat),
\sum_(t1 t < t2) size (F t) =
size (\cat_(t1 t < t2) F t).
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
- have EX: Δ, t2 = t1 + Δ by simpl; (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
by rewrite size_cat IHΔ ⇒ //; lia. }
- by rewrite !big_geq ⇒ //.
Qed.

End BigCatNatLemmas.

In this section, we introduce a few lemmas about the concatenation operation performed over arbitrary sequences.
Section BigCatLemmas.

Consider any two types X and Y supporting equality comparisons...
Variable X Y : eqType.

...and a function f that, given an index X, yields a sequence of Y.
Variable f : X seq Y.

First, we show that the concatenation comprises all the elements of each sequence; i.e. any element contained in one of the sequences will also be an element of the result of the concatenation.
Lemma mem_bigcat :
x y s,
x \in s
y \in f x
y \in \cat_(x <- s) f x.
Proof.
movex y s INs INfx.
induction s; first by done.
rewrite big_cons mem_cat.
move:INs; rewrite in_cons ⇒ /orP[/eqP HEAD | CONS].
- by rewrite -HEAD; apply /orP; left.
- by apply /orP; right; apply IHs.
Qed.

Conversely, we prove that any element belonging to a concatenation of sequences must come from one of the sequences.
Lemma mem_bigcat_exists :
s y,
y \in \cat_(x <- s) f x
x, x \in s y \in f x.
Proof.
induction s; first by rewrite big_nil.
movey.
rewrite big_cons mem_cat ⇒ /orP[HEAD | CONS].
- a.
by split ⇒ //; apply mem_head.
- move: (IHs _ CONS) ⇒ [x [INs INfx]].
x; split =>//.
by rewrite in_cons; apply /orP; right.
Qed.

Next, we show that a map and filter operation can be done either before or after a concatenation, leading to the same result.
Lemma bigcat_filter_eq_filter_bigcat :
xss P,
[seq x <- \cat_(xs <- xss) f xs | P x] =
\cat_(xs <- xss) [seq x <- f xs | P x] .
Proof.
movexss P.
induction xss.
- by rewrite !big_nil.
- by rewrite !big_cons filter_cat IHxss.
Qed.

In this section, we show how we can preserve uniqueness of the elements (i.e. the absence of a duplicate) over a concatenation of sequences.
Section BigCatDistinctElements.

Assume that there are no duplicates in each of the possible sequences to concatenate...
Hypothesis H_uniq_f : x, uniq (f x).

...and that there are no elements in common between the sequences.
Hypothesis H_no_elements_in_common :
x y z,
x \in f y x \in f z y = z.

We prove that the concatenation will yield a sequence with unique elements.
Lemma bigcat_uniq :
xs,
uniq xs
uniq (\cat_(x <- xs) (f x)).
Proof.
induction xs; first by rewrite big_nil.
rewrite cons_uniq ⇒ /andP [NINxs UNIQ].
rewrite big_cons cat_uniq.
apply /andP; split; first by apply H_uniq_f.
apply /andP; split; last by apply IHxs.
apply /hasPnx IN; apply /negPINfa.
move: (mem_bigcat_exists _ _ IN) ⇒ [a' [INxs INfa']].
move: (H_no_elements_in_common x a a' INfa INfa') ⇒ EQa.
by move: NINxs; rewrite EQa ⇒ /negP CONTRA.
Qed.

End BigCatDistinctElements.

In this section, we show some properties of the concatenation of sequences in combination with a function g that cancels f.
Consider a function g...
Variable g : Y X.

... and assume that g can cancel f starting from an element of the sequence f x.
Hypothesis H_g_cancels_f : x y, y \in f x g y = x.

First, we show that no element of a sequence f x1 can be fed into g and obtain an element x2 which differs from x1. Hence, filtering by this condition always leads to the empty sequence.
Lemma seq_different_elements_nil :
x1 x2,
x1 != x2
[seq x <- f x1 | g x == x2] = [::].
Proof.
movex1 x2 ⇒ /negP NEQ.
apply filter_in_pred0.
movey IN; apply/negP ⇒ /eqP EQ2.
apply: NEQ; apply/eqP.
move: (H_g_cancels_f _ _ IN) ⇒ EQ1.
by rewrite -EQ1 -EQ2.
Qed.

Finally, assume we are given an element y which is contained in a duplicate-free sequence xs. Then, f is applied to each element of xs, but only the elements for which g yields y are kept. In this scenario, concatenating the resulting sequences will always lead to f y.
Lemma bigcat_seq_uniqK :
y xs,
y \in xs
uniq xs
\cat_(x <- xs) [seq x' <- f x | g x' == y] = f y.
Proof.
movey xs IN UNI.
induction xs as [ | x' xs]; first by done.
move: IN; rewrite in_cons ⇒ /orP [/eqP EQ| IN].
{ subst; rewrite !big_cons.
have → : [seq x <- f x' | g x == x'] = f x'.
{ apply/all_filterP/allP.
intros y IN; apply/eqP.
by apply H_g_cancels_f. }
have ->: \cat_(j<-xs)[seq x <- f j | g x == x'] = [::]; last by rewrite cats0.
rewrite big1_seq //; movexs2 /andP [_ IN].
have NEQ: xs2 != x'; last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
{ rewrite big_cons IHxs //; last by move:UNI; rewrite cons_uniq⇒ /andP[_ ?].
have NEQ: (x' != y); last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
Qed.

End BigCatWithCancelFunctions.

End BigCatLemmas.

In this section, we show that the number of elements of the result of a nested mapping and concatenation operation is independent from the order in which the concatenations are performed.
Consider any three types supporting equality comparisons...
Variable X Y Z : eqType.

... a function F that, given two indices, yields a sequence...
Variable F : X Y seq Z.

and a predicate P.
Variable P : pred Z.

Assume that, given two sequences xs and ys, their elements are fed to F in a pair-wise fashion. The resulting lists are then concatenated. The following lemma shows that, when the operation described above is performed, the number of elements respecting P in the resulting list is the same, regardless of the order in which xs and ys are combined.
Lemma bigcat_count_exchange :
xs ys,
count P (\cat_(x <- xs) \cat_(y <- ys) F x y) =
count P (\cat_(y <- ys) \cat_(x <- xs) F x y).
Proof.
induction xs as [|x0 seqX IHxs]; induction ys as [|y0 seqY IHys]; intros.
{ by rewrite !big_nil. }
{ by rewrite big_cons count_cat -IHys !big_nil. }
{ by rewrite big_cons count_cat IHxs !big_nil. }
{ rewrite !big_cons !count_cat.