Library prosa.analysis.facts.model.offset
In this module, we prove some properties of task offsets.
Consider any type of tasks with an offset ...
... and any type of jobs associated with these tasks.
Consider any arrival sequence with consistent and non-duplicate arrivals ...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Variable tsk : Task.
Variable j : Job.
Hypothesis H_job_of_task: job_task j = tsk.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_job_from_arrseq: arrives_in arr_seq j.
Variable j : Job.
Hypothesis H_job_of_task: job_task j = tsk.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_job_from_arrseq: arrives_in arr_seq j.
Lemma first_job_arrival:
job_index arr_seq j = 0 →
job_arrival j = task_offset tsk.
Proof.
intros INDX.
move: H_valid_offset ⇒ [BEFORE [j' [ARR' [TSK ARRIVAL]]]].
case: (boolP (j' == j)) ⇒ [/eqP EQ|NEQ]; first by rewrite -EQ.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j')) as [Z | [m N]].
- move: NEQ ⇒ /eqP NEQ; contradict NEQ.
by eapply equal_index_implies_equal_jobs; eauto;
[rewrite TSK | rewrite Z INDX].
- have IND_LTE : (job_index arr_seq j ≤ job_index arr_seq j') by rewrite INDX N.
apply index_lte_implies_arrival_lte in IND_LTE ⇒ //; last by rewrite TSK.
by apply/eqP; rewrite eqn_leq; apply/andP; split;
[lia | apply H_valid_offset].
Qed.
job_index arr_seq j = 0 →
job_arrival j = task_offset tsk.
Proof.
intros INDX.
move: H_valid_offset ⇒ [BEFORE [j' [ARR' [TSK ARRIVAL]]]].
case: (boolP (j' == j)) ⇒ [/eqP EQ|NEQ]; first by rewrite -EQ.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j')) as [Z | [m N]].
- move: NEQ ⇒ /eqP NEQ; contradict NEQ.
by eapply equal_index_implies_equal_jobs; eauto;
[rewrite TSK | rewrite Z INDX].
- have IND_LTE : (job_index arr_seq j ≤ job_index arr_seq j') by rewrite INDX N.
apply index_lte_implies_arrival_lte in IND_LTE ⇒ //; last by rewrite TSK.
by apply/eqP; rewrite eqn_leq; apply/andP; split;
[lia | apply H_valid_offset].
Qed.
Consider any task set ts.
If task tsk is in ts, then its offset
is less than or equal to the maximum offset of all tasks
in ts.
Lemma max_offset_g:
tsk \in ts →
task_offset tsk ≤ max_task_offset ts.
Proof.
intros TSK_IN.
apply in_max0_le.
by apply map_f.
Qed.
End OffsetLemmas.
tsk \in ts →
task_offset tsk ≤ max_task_offset ts.
Proof.
intros TSK_IN.
apply in_max0_le.
by apply map_f.
Qed.
End OffsetLemmas.