Library prosa.implementation.refinements.arrival_curve
Require Export prosa.analysis.definitions.request_bound_function.
Require Export prosa.implementation.refinements.task.
Require Export prosa.implementation.refinements.task.
Arrival Curve Refinements.
Definition get_horizon_of_task (tsk : Task) : duration :=
horizon_of (get_arrival_curve_prefix tsk).
horizon_of (get_arrival_curve_prefix tsk).
... another one that yields the time steps of the arrival curve, ...
Definition get_time_steps_of_task (tsk : Task) : seq duration :=
time_steps_of (get_arrival_curve_prefix tsk).
time_steps_of (get_arrival_curve_prefix tsk).
... a function that yields the same time steps, offset by δ, ...
... and a generalization of the previous function that repeats the time
steps for each given offset.
Definition repeat_steps_with_offset (tsk : Task) (offsets : seq nat): seq nat :=
flatten (map (time_steps_with_offset tsk) offsets).
flatten (map (time_steps_with_offset tsk) offsets).
For convenience, we provide a short form to indicate the request-bound
function of a task.
Further, we define a valid arrival bound as (1) a positive
minimum inter-arrival time/period, or (2) a valid arrival curve prefix.
Definition valid_arrivals (tsk : Task) : bool :=
match task_arrival tsk with
| Periodic p ⇒ p ≥ 1
| Sporadic m ⇒ m ≥ 1
| ArrivalPrefix emax_vec ⇒ valid_arrival_curve_prefix_dec emax_vec
end.
match task_arrival tsk with
| Periodic p ⇒ p ≥ 1
| Sporadic m ⇒ m ≥ 1
| ArrivalPrefix emax_vec ⇒ valid_arrival_curve_prefix_dec emax_vec
end.
Next, we define some helper functions, that indicate whether
the given task is periodic, ...
... sporadic, ...
... or bounded by an arrival curve.
Definition is_etamax_arrivals (tsk : Task) : Prop :=
∃ ac_prefix_vec, task_arrival tsk = ArrivalPrefix ac_prefix_vec.
∃ ac_prefix_vec, task_arrival tsk = ArrivalPrefix ac_prefix_vec.
Further, for convenience, we define the notion of task
having a valid arrival curve.
Definition has_valid_arrival_curve_prefix (tsk: Task) :=
∃ ac_prefix_vec, get_arrival_curve_prefix tsk = ac_prefix_vec ∧
valid_arrival_curve_prefix ac_prefix_vec.
∃ ac_prefix_vec, get_arrival_curve_prefix tsk = ac_prefix_vec ∧
valid_arrival_curve_prefix ac_prefix_vec.
Finally, we define define the notion of task set with
valid arrivals.
In this section, we prove some facts regarding the above definitions.
Consider a task tsk.
First, we show that valid_arrivals matches valid_arrivals_dec.
Lemma valid_arrivals_P :
reflect (valid_arrivals tsk) (valid_arrivals tsk).
Proof.
destruct tsk, task_arrival.
all: unfold valid_arrivals, valid_arrivals; try by apply idP.
Qed.
reflect (valid_arrivals tsk) (valid_arrivals tsk).
Proof.
destruct tsk, task_arrival.
all: unfold valid_arrivals, valid_arrivals; try by apply idP.
Qed.
Next, we show that a task is either periodic, sporadic, or bounded by
an arrival-curve prefix.
Lemma arrival_cases :
is_periodic_arrivals tsk
∨ is_sporadic_arrivals tsk
∨ is_etamax_arrivals tsk.
Proof.
rewrite /is_periodic_arrivals /is_sporadic_arrivals /is_etamax_arrivals.
destruct (task_arrival tsk).
- by left; eexists; reflexivity.
- by right; left; eexists; reflexivity.
- by right; right; eexists; reflexivity.
Qed.
End Facts.
is_periodic_arrivals tsk
∨ is_sporadic_arrivals tsk
∨ is_etamax_arrivals tsk.
Proof.
rewrite /is_periodic_arrivals /is_sporadic_arrivals /is_etamax_arrivals.
destruct (task_arrival tsk).
- by left; eexists; reflexivity.
- by right; left; eexists; reflexivity.
- by right; right; eexists; reflexivity.
Qed.
End Facts.
In this fairly technical section, we prove a series of refinements
aimed to be able to convert between a standard natural-number task
arrival bound and an arrival bound that uses, instead of numbers,
a generic type T.
First, we prove a refinement for positive_horizon.
Local Instance refine_positive_horizon :
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
positive_horizon positive_horizon_T.
Proof.
unfold positive_horizon, positive_horizon_T.
apply refines_abstr; intros.
unfold horizon_of, horizon_of_T.
destruct a as [h s], b as [h' s']; simpl.
rewrite refinesE; rewrite refinesE in X; inversion_clear X.
by apply refine_ltn; auto using Rnat_0.
Qed.
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
positive_horizon positive_horizon_T.
Proof.
unfold positive_horizon, positive_horizon_T.
apply refines_abstr; intros.
unfold horizon_of, horizon_of_T.
destruct a as [h s], b as [h' s']; simpl.
rewrite refinesE; rewrite refinesE in X; inversion_clear X.
by apply refine_ltn; auto using Rnat_0.
Qed.
Next, we prove a refinement for large_horizon.
Local Instance refine_large_horizon :
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
large_horizon_dec large_horizon_T.
Proof.
unfold large_horizon_dec, large_horizon_T.
apply refines_abstr; intros ac ac' Rac.
refines_apply.
apply refines_abstr; intros a a' Ra.
by refines_apply.
Qed.
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
large_horizon_dec large_horizon_T.
Proof.
unfold large_horizon_dec, large_horizon_T.
apply refines_abstr; intros ac ac' Rac.
refines_apply.
apply refines_abstr; intros a a' Ra.
by refines_apply.
Qed.
Next, we prove a refinement for no_inf_arrivals.
Local Instance refine_no_inf_arrivals :
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
no_inf_arrivals no_inf_arrivals_T.
Proof.
unfold no_inf_arrivals, no_inf_arrivals_T.
apply refines_abstr; intros ac ac' Rac.
refines_apply.
Qed.
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
no_inf_arrivals no_inf_arrivals_T.
Proof.
unfold no_inf_arrivals, no_inf_arrivals_T.
apply refines_abstr; intros ac ac' Rac.
refines_apply.
Qed.
Next, we prove a refinement for specified_bursts.
Local Instance refine_specified_bursts :
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
specified_bursts specified_bursts_T.
Proof.
unfold specified_bursts, specified_bursts_T.
apply refines_abstr; intros ac ac' Rac.
rewrite -has_pred1.
refines_apply; last first.
- by refines_abstr; rewrite pred1E eq_sym /ε; refines_apply.
- refines_abstr.
rewrite refinesE; eapply has_R; last by apply refinesP; eassumption.
by intros; apply refinesP; refines_apply.
Qed.
refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
specified_bursts specified_bursts_T.
Proof.
unfold specified_bursts, specified_bursts_T.
apply refines_abstr; intros ac ac' Rac.
rewrite -has_pred1.
refines_apply; last first.
- by refines_abstr; rewrite pred1E eq_sym /ε; refines_apply.
- refines_abstr.
rewrite refinesE; eapply has_R; last by apply refinesP; eassumption.
by intros; apply refinesP; refines_apply.
Qed.
Next, we prove a refinement for the arrival curve prefix validity.
Local Instance refine_valid_arrival_curve_prefix :
refines
(prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
valid_arrival_curve_prefix_dec
valid_extrapolated_arrival_curve_T.
Proof.
apply refines_abstr.
unfold valid_arrival_curve_prefix_dec, valid_extrapolated_arrival_curve_T.
by intros; refines_apply.
Qed.
refines
(prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
valid_arrival_curve_prefix_dec
valid_extrapolated_arrival_curve_T.
Proof.
apply refines_abstr.
unfold valid_arrival_curve_prefix_dec, valid_extrapolated_arrival_curve_T.
by intros; refines_apply.
Qed.
Next, we prove a refinement for the arrival curve validity.
Global Instance refine_valid_arrivals :
∀ tsk,
refines (bool_R)%rel
(valid_arrivals (taskT_to_task tsk))
(valid_arrivals_T tsk) | 0.
Proof.
intros ?.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
all: unfold valid_arrivals, valid_arrivals_T.
destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: try (refines_apply; rewrite refinesE; inversion Rab; subst; by done).
{ unfold ArrivalCurvePrefix in ×.
refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [|s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply. }
Qed.
∀ tsk,
refines (bool_R)%rel
(valid_arrivals (taskT_to_task tsk))
(valid_arrivals_T tsk) | 0.
Proof.
intros ?.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
all: unfold valid_arrivals, valid_arrivals_T.
destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: try (refines_apply; rewrite refinesE; inversion Rab; subst; by done).
{ unfold ArrivalCurvePrefix in ×.
refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [|s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply. }
Qed.
Next, we prove a refinement for repeat_steps_with_offset.
Global Instance refine_repeat_steps_with_offset :
refines (Rtask ==> list_R Rnat ==> list_R Rnat)%rel
repeat_steps_with_offset repeat_steps_with_offset_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk os os' Ros.
apply flatten_R; eapply map_R; last by apply Ros.
intros o o' Ro.
eapply map_R.
{ by intros a a' Ra; apply refinesP; refines_apply. }
{ unfold get_time_steps_of_task, get_time_steps_of_task_T.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [ |s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply. } }
Qed.
refines (Rtask ==> list_R Rnat ==> list_R Rnat)%rel
repeat_steps_with_offset repeat_steps_with_offset_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk os os' Ros.
apply flatten_R; eapply map_R; last by apply Ros.
intros o o' Ro.
eapply map_R.
{ by intros a a' Ra; apply refinesP; refines_apply. }
{ unfold get_time_steps_of_task, get_time_steps_of_task_T.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [ |s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply. } }
Qed.
Next, we prove a refinement for get_horizon_of_task.
Global Instance refine_get_horizon_of_task :
refines (Rtask ==> Rnat)%rel get_horizon_of_task get_horizon_of_task_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk.
rewrite /get_horizon_of_task /get_horizon_of_task_T.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
rewrite /horizon_of /horizon_of_T //=.
by inversion Rab; apply refinesP; tc. }
Qed.
refines (Rtask ==> Rnat)%rel get_horizon_of_task get_horizon_of_task_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk.
rewrite /get_horizon_of_task /get_horizon_of_task_T.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ apply refinesP; refines_apply.
by rewrite refinesE; inversion Rab; subst. }
{ destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
rewrite /horizon_of /horizon_of_T //=.
by inversion Rab; apply refinesP; tc. }
Qed.
Next, we prove a refinement for the extrapolated arrival curve.
Local Instance refine_extrapolated_arrival_curve :
∀ arrival_curve_prefix arrival_curve_prefixT δ δ',
refines Rnat δ δ' →
Rtask_ab (ArrivalPrefix arrival_curve_prefix) (ArrivalPrefix_T arrival_curve_prefixT) →
refines Rnat (extrapolated_arrival_curve arrival_curve_prefix δ) (extrapolated_arrival_curve_T arrival_curve_prefixT δ').
Proof.
move⇒ arrival_curve_prefix arrival_curve_prefixT δ δ' Rδ Rab.
refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [ |s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply.
Qed.
∀ arrival_curve_prefix arrival_curve_prefixT δ δ',
refines Rnat δ δ' →
Rtask_ab (ArrivalPrefix arrival_curve_prefix) (ArrivalPrefix_T arrival_curve_prefixT) →
refines Rnat (extrapolated_arrival_curve arrival_curve_prefix δ) (extrapolated_arrival_curve_T arrival_curve_prefixT δ').
Proof.
move⇒ arrival_curve_prefix arrival_curve_prefixT δ δ' Rδ Rab.
refines_apply.
destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
inversion Rab; refines_apply.
move: H1; clear; move: st'.
rewrite refinesE; induction st; intros [ |s st']; try done.
- by intros _; rewrite //=; apply list_R_nil_R.
- intros ?; inversion H1; rewrite //=.
apply list_R_cons_R; last by apply IHst.
destruct s, a; unfold tb2tn, tmap; simpl.
by apply refinesP; refines_apply.
Qed.
Next, we prove a refinement for the arrival bound definition.
Local Instance refine_ConcreteMaxArrivals :
refines ( Rtask ==> Rnat ==> Rnat )%rel ConcreteMaxArrivals ConcreteMaxArrivals_T.
Proof.
apply refines_abstr2.
rewrite /ConcreteMaxArrivals /concrete_max_arrivals /ConcreteMaxArrivals_T.
move ⇒ tsk tsk' Rtsk δ δ' Rδ.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; rewrite refinesE in Rtsk.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by apply refine_extrapolated_arrival_curve. }
Qed.
refines ( Rtask ==> Rnat ==> Rnat )%rel ConcreteMaxArrivals ConcreteMaxArrivals_T.
Proof.
apply refines_abstr2.
rewrite /ConcreteMaxArrivals /concrete_max_arrivals /ConcreteMaxArrivals_T.
move ⇒ tsk tsk' Rtsk δ δ' Rδ.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; rewrite refinesE in Rtsk.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by apply refine_extrapolated_arrival_curve. }
Qed.
Next, we prove a refinement for the arrival bound definition applied to the
task conversion function.
Global Instance refine_ConcreteMaxArrivals' :
∀ tsk,
refines (Rnat ==> Rnat)%rel (ConcreteMaxArrivals (taskT_to_task tsk))
(ConcreteMaxArrivals_T tsk) | 0.
Proof.
intros tsk; apply refines_abstr.
rewrite /ConcreteMaxArrivals /concrete_max_arrivals
/ConcreteMaxArrivals_T ⇒ δ δ' Rδ.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T tsk) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by apply refine_extrapolated_arrival_curve. }
Qed.
∀ tsk,
refines (Rnat ==> Rnat)%rel (ConcreteMaxArrivals (taskT_to_task tsk))
(ConcreteMaxArrivals_T tsk) | 0.
Proof.
intros tsk; apply refines_abstr.
rewrite /ConcreteMaxArrivals /concrete_max_arrivals
/ConcreteMaxArrivals_T ⇒ δ δ' Rδ.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T tsk) as [?|?|arrival_curve_prefixT].
all: try (inversion Rab; fail).
all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by refines_apply; rewrite refinesE; inversion Rab; subst. }
{ by apply refine_extrapolated_arrival_curve. }
Qed.
Next, we prove a refinement for get_arrival_curve_prefix.
Global Instance refine_get_arrival_curve_prefix :
refines (Rtask ==> prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
get_arrival_curve_prefix get_extrapolated_arrival_curve_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
all: try (inversion Rab; fail).
all: try (inversion Rab; subst; apply refinesP; refines_apply; fail).
destruct e as [h?], eT as [? st];[apply refinesP; refines_apply; inversion Rab; tc].
inversion Rab; subst.
induction st; first by rewrite //= refinesE; apply list_R_nil_R.
destruct a; rewrite refinesE.
apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
by apply refinesP, IHst.
Qed.
refines (Rtask ==> prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
get_arrival_curve_prefix get_extrapolated_arrival_curve_T.
Proof.
rewrite refinesE ⇒ tsk tsk' Rtsk.
have Rab := refine_task_arrival.
rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
all: try (inversion Rab; fail).
all: try (inversion Rab; subst; apply refinesP; refines_apply; fail).
destruct e as [h?], eT as [? st];[apply refinesP; refines_apply; inversion Rab; tc].
inversion Rab; subst.
induction st; first by rewrite //= refinesE; apply list_R_nil_R.
destruct a; rewrite refinesE.
apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
by apply refinesP, IHst.
Qed.
Next, we prove a refinement for get_arrival_curve_prefix applied to lists.
Global Instance refine_get_arrival_curve_prefix' :
∀ tsk,
refines
(prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
(get_arrival_curve_prefix (taskT_to_task tsk))
(get_extrapolated_arrival_curve_T tsk) | 0.
Proof.
intros tsk.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
move: (refine_task_arrival) ⇒ Rab.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
all: try (inversion Rab; fail).
all: try (inversion Rab; subst; refines_apply; fail).
destruct e as [h?], eT as [? st]; refines_apply; first by inversion Rab; subst; tc.
inversion Rab; subst.
induction st; first by rewrite //= refinesE; apply list_R_nil_R.
destruct a; rewrite //= refinesE.
apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
by apply refinesP, IHst.
Qed.
∀ tsk,
refines
(prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
(get_arrival_curve_prefix (taskT_to_task tsk))
(get_extrapolated_arrival_curve_T tsk) | 0.
Proof.
intros tsk.
have Rtsk := refine_task'.
rewrite refinesE in Rtsk.
specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
move: (refine_task_arrival) ⇒ Rab.
rewrite refinesE in Rab.
specialize (Rab _ _ Rtsk).
rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
all: try (inversion Rab; fail).
all: try (inversion Rab; subst; refines_apply; fail).
destruct e as [h?], eT as [? st]; refines_apply; first by inversion Rab; subst; tc.
inversion Rab; subst.
induction st; first by rewrite //= refinesE; apply list_R_nil_R.
destruct a; rewrite //= refinesE.
apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
by apply refinesP, IHst.
Qed.
Global Instance refine_sorted_leq_steps :
∀ tsk,
refines (bool_R)%rel
(sorted leq_steps (steps_of (get_arrival_curve_prefix (taskT_to_task tsk))))
(sorted leq_steps_T (get_extrapolated_arrival_curve_T tsk).2) | 0.
Proof.
intros.
by apply refine_leq_steps_sorted; refines_apply.
Qed.
∀ tsk,
refines (bool_R)%rel
(sorted leq_steps (steps_of (get_arrival_curve_prefix (taskT_to_task tsk))))
(sorted leq_steps_T (get_extrapolated_arrival_curve_T tsk).2) | 0.
Proof.
intros.
by apply refine_leq_steps_sorted; refines_apply.
Qed.
Lastly, we prove a refinement for the task request-bound function.
Global Instance refine_task_rbf :
refines ( Rtask ==> Rnat ==> Rnat )%rel task_rbf task_rbf_T.
Proof.
apply refines_abstr2.
rewrite /task_rbf /task_rbf_T /task_request_bound_function
/concept.task_cost /TaskCost
/max_arrivals /MaxArrivals ⇒ t t' Rt y y' Ry.
by refines_apply.
Qed.
End Theory.
refines ( Rtask ==> Rnat ==> Rnat )%rel task_rbf task_rbf_T.
Proof.
apply refines_abstr2.
rewrite /task_rbf /task_rbf_T /task_request_bound_function
/concept.task_cost /TaskCost
/max_arrivals /MaxArrivals ⇒ t t' Rt y y' Ry.
by refines_apply.
Qed.
End Theory.