Library discprob.basic.sval
From mathcomp Require Export ssreflect.
From mathcomp Require eqtype.
From discprob.basic Require Export classic_proof_irrel.
Notation sval := eqtype.sval.
Lemma sval_inj_pred {A: Type} (P: A → bool) (a b: {x : A | is_true (P x)}):
proj1_sig a = proj1_sig b → a = b.
Lemma sval_inj_pi {A: Type} (P: A → Prop) (a b: {x : A | P x}):
proj1_sig a = proj1_sig b → a = b.
From mathcomp Require eqtype.
From discprob.basic Require Export classic_proof_irrel.
Notation sval := eqtype.sval.
Lemma sval_inj_pred {A: Type} (P: A → bool) (a b: {x : A | is_true (P x)}):
proj1_sig a = proj1_sig b → a = b.
Lemma sval_inj_pi {A: Type} (P: A → Prop) (a b: {x : A | P x}):
proj1_sig a = proj1_sig b → a = b.