Library rt.implementation.job
Require Import rt.model.time rt.util.all.
Require Import rt.implementation.task.
Module ConcreteJob.
Import Time.
Import ConcreteTask.
Section Defs.
(* Definition of a concrete task. *)
Record concrete_job :=
{
job_id: nat;
job_arrival: time;
job_cost: time;
job_deadline: time;
job_task: concrete_task_eqType
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete jobs. *)
Definition job_eqdef (j1 j2: concrete_job) :=
(job_id j1 == job_id j2) &&
(job_arrival j1 == job_arrival j2) &&
(job_cost j1 == job_cost j2) &&
(job_deadline j1 == job_deadline j2) &&
(job_task j1 == job_task j2).
(* Next, we prove that job_eqdef is indeed an equality, ... *)
Lemma eqn_job : Equality.axiom job_eqdef.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_job_eqMixin := EqMixin eqn_job.
Canonical concrete_job_eqType := Eval hnf in EqType concrete_job concrete_job_eqMixin.
End Defs.
End ConcreteJob.
Require Import rt.implementation.task.
Module ConcreteJob.
Import Time.
Import ConcreteTask.
Section Defs.
(* Definition of a concrete task. *)
Record concrete_job :=
{
job_id: nat;
job_arrival: time;
job_cost: time;
job_deadline: time;
job_task: concrete_task_eqType
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete jobs. *)
Definition job_eqdef (j1 j2: concrete_job) :=
(job_id j1 == job_id j2) &&
(job_arrival j1 == job_arrival j2) &&
(job_cost j1 == job_cost j2) &&
(job_deadline j1 == job_deadline j2) &&
(job_task j1 == job_task j2).
(* Next, we prove that job_eqdef is indeed an equality, ... *)
Lemma eqn_job : Equality.axiom job_eqdef.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_job_eqMixin := EqMixin eqn_job.
Canonical concrete_job_eqType := Eval hnf in EqType concrete_job concrete_job_eqMixin.
End Defs.
End ConcreteJob.