Library rt.util.ord_quantifier
Require Import rt.util.tactics.
(* Lemmas about the exists for Ordinals: [exists x, P x]. *)
Section OrdExists.
Lemma exists_ord0:
∀ P,
[∃ x in 'I_0, P x] = false.
Lemma exists_recr:
∀ n P,
[∃ x in 'I_n.+1, P x] =
[∃ x in 'I_n, P (widen_ord (leqnSn n) x)] || P (ord_max).
End OrdExists.
(* Lemmas about the forall for Ordinals: [exists x, P x]. *)
Section OrdForall.
Lemma forall_ord0:
∀ P,
[∀ x in 'I_0, P x].
Lemma forall_recr:
∀ n P,
[∀ x in 'I_n.+1, P x] =
[∀ x in 'I_n, P (widen_ord (leqnSn n) x)] && P (ord_max).
End OrdForall.
(* Tactics for simplifying exists and forall. *)
Ltac simpl_exists_ord := rewrite !exists_recr !exists_ord0 /=.
Ltac simpl_forall_ord := rewrite !forall_recr !forall_ord0 /=.
(* Lemmas about the exists for Ordinals: [exists x, P x]. *)
Section OrdExists.
Lemma exists_ord0:
∀ P,
[∃ x in 'I_0, P x] = false.
Lemma exists_recr:
∀ n P,
[∃ x in 'I_n.+1, P x] =
[∃ x in 'I_n, P (widen_ord (leqnSn n) x)] || P (ord_max).
End OrdExists.
(* Lemmas about the forall for Ordinals: [exists x, P x]. *)
Section OrdForall.
Lemma forall_ord0:
∀ P,
[∀ x in 'I_0, P x].
Lemma forall_recr:
∀ n P,
[∀ x in 'I_n.+1, P x] =
[∀ x in 'I_n, P (widen_ord (leqnSn n) x)] && P (ord_max).
End OrdForall.
(* Tactics for simplifying exists and forall. *)
Ltac simpl_exists_ord := rewrite !exists_recr !exists_ord0 /=.
Ltac simpl_forall_ord := rewrite !forall_recr !forall_ord0 /=.