Library rt.implementation.basic.arrival_sequence
Require Import
rt.util.all.
Require Import rt.model.basic.arrival_sequence rt.model.basic.job
rt.model.basic.task rt.model.basic.task_arrival.
Require Import rt.implementation.basic.task rt.implementation.basic.job.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset SporadicTaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (t: time) (tsk: concrete_task) :=
if task_period tsk %| t then
Some (Build_concrete_job (t %/ task_period tsk) (task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ (j: JobIn arr_seq),
job_task (_job_in arr_seq j) \in ts. (* TODO: fix coercion. *)
(* ..., jobs have valid parameters, ... *)
Theorem periodic_arrivals_valid_job_parameters:
∀ (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period arr_seq job_task.
(* ... and if the task set has no duplicates, the same applies to
the arrival sequence. *)
Theorem periodic_arrivals_is_a_set:
uniq ts → arrival_sequence_is_a_set arr_seq.
End Proofs.
End ConcreteArrivalSequence.
Require Import rt.model.basic.arrival_sequence rt.model.basic.job
rt.model.basic.task rt.model.basic.task_arrival.
Require Import rt.implementation.basic.task rt.implementation.basic.job.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset SporadicTaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (t: time) (tsk: concrete_task) :=
if task_period tsk %| t then
Some (Build_concrete_job (t %/ task_period tsk) (task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ (j: JobIn arr_seq),
job_task (_job_in arr_seq j) \in ts. (* TODO: fix coercion. *)
(* ..., jobs have valid parameters, ... *)
Theorem periodic_arrivals_valid_job_parameters:
∀ (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period arr_seq job_task.
(* ... and if the task set has no duplicates, the same applies to
the arrival sequence. *)
Theorem periodic_arrivals_is_a_set:
uniq ts → arrival_sequence_is_a_set arr_seq.
End Proofs.
End ConcreteArrivalSequence.