Library rt.implementation.apa.task
Require Import rt.model.apa.time rt.util.all.
Require Import rt.model.apa.task rt.model.apa.affinity.
Module ConcreteTask.
Import Time SporadicTaskset Affinity.
Section Defs.
(* Let num_cpus be the number of processors. *)
Context {num_cpus: nat}.
(* Definition of a concrete task. *)
Record concrete_task :=
{
task_id: nat; (* for uniqueness *)
task_cost: time;
task_period: time;
task_deadline: time;
task_affinity: affinity num_cpus
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete tasks. *)
Definition task_eqdef (t1 t2: concrete_task) :=
(task_id t1 = task_id t2) ∧
(task_cost t1 = task_cost t2) ∧
(task_period t1 = task_period t2) ∧
(task_deadline t1 = task_deadline t2) ∧
(task_affinity t1 = task_affinity t2).
(* Next, we prove that task_eqdef is indeed an equality, ... *)
Lemma eqn_task : Equality.axiom task_eqdef.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_task_eqMixin := EqMixin eqn_task.
Canonical concrete_task_eqType := Eval hnf in EqType concrete_task concrete_task_eqMixin.
End Defs.
Section ConcreteTaskset.
(* Let num_cpus be the number of processors. *)
Variable num_cpus: nat.
Definition concrete_taskset :=
taskset_of (@concrete_task_eqType num_cpus).
End ConcreteTaskset.
End ConcreteTask.
Require Import rt.model.apa.task rt.model.apa.affinity.
Module ConcreteTask.
Import Time SporadicTaskset Affinity.
Section Defs.
(* Let num_cpus be the number of processors. *)
Context {num_cpus: nat}.
(* Definition of a concrete task. *)
Record concrete_task :=
{
task_id: nat; (* for uniqueness *)
task_cost: time;
task_period: time;
task_deadline: time;
task_affinity: affinity num_cpus
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete tasks. *)
Definition task_eqdef (t1 t2: concrete_task) :=
(task_id t1 = task_id t2) ∧
(task_cost t1 = task_cost t2) ∧
(task_period t1 = task_period t2) ∧
(task_deadline t1 = task_deadline t2) ∧
(task_affinity t1 = task_affinity t2).
(* Next, we prove that task_eqdef is indeed an equality, ... *)
Lemma eqn_task : Equality.axiom task_eqdef.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_task_eqMixin := EqMixin eqn_task.
Canonical concrete_task_eqType := Eval hnf in EqType concrete_task concrete_task_eqMixin.
End Defs.
Section ConcreteTaskset.
(* Let num_cpus be the number of processors. *)
Variable num_cpus: nat.
Definition concrete_taskset :=
taskset_of (@concrete_task_eqType num_cpus).
End ConcreteTaskset.
End ConcreteTask.