Library rt.implementation.basic.task
Require Import rt.model.basic.time rt.util.all.
Require Import rt.model.basic.task.
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq.
Module ConcreteTask.
Import Time SporadicTaskset.
Section Defs.
(* Definition of a concrete task. *)
Record concrete_task :=
{
task_id: nat; (* for uniqueness *)
task_cost: time;
task_period: time;
task_deadline: time
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete tasks. *)
Definition task_eqdef (t1 t2: concrete_task) :=
(task_id t1 = task_id t2) ∧
(task_cost t1 = task_cost t2) ∧
(task_period t1 = task_period t2) ∧
(task_deadline t1 = task_deadline t2).
(* Next, we prove that task_eqdef is indeed an equality, ... *)
Lemma eqn_task : Equality.axiom task_eqdef.
Proof.
unfold Equality.axiom; intros x y.
destruct (task_eqdef x y) eqn:EQ.
{
apply ReflectT.
unfold task_eqdef in ×.
move: EQ ⇒ /andP [/andP [/andP [/eqP ID /eqP COST] /eqP PERIOD] /eqP DL].
by destruct x, y; simpl in *; subst.
}
{
apply ReflectF.
unfold task_eqdef, not in *; intro BUG.
apply negbT in EQ; rewrite negb_and in EQ.
destruct x, y.
rewrite negb_and in EQ.
move: EQ ⇒ /orP [EQ | /eqP DL]; last by apply DL; inversion BUG.
move: EQ ⇒ /orP [EQ | /eqP PERIOD].
rewrite negb_and in EQ.
move: EQ ⇒ /orP [/eqP ID | /eqP COST].
by apply ID; inversion BUG.
by apply COST; inversion BUG.
by apply PERIOD; inversion BUG.
}
Qed.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_task_eqMixin := EqMixin eqn_task.
Canonical concrete_task_eqType := Eval hnf in EqType concrete_task concrete_task_eqMixin.
End Defs.
Section ConcreteTaskset.
Definition concrete_taskset :=
taskset_of concrete_task_eqType.
End ConcreteTaskset.
End ConcreteTask.
Require Import rt.model.basic.task.
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq.
Module ConcreteTask.
Import Time SporadicTaskset.
Section Defs.
(* Definition of a concrete task. *)
Record concrete_task :=
{
task_id: nat; (* for uniqueness *)
task_cost: time;
task_period: time;
task_deadline: time
}.
(* To make it compatible with ssreflect, we define a decidable
equality for concrete tasks. *)
Definition task_eqdef (t1 t2: concrete_task) :=
(task_id t1 = task_id t2) ∧
(task_cost t1 = task_cost t2) ∧
(task_period t1 = task_period t2) ∧
(task_deadline t1 = task_deadline t2).
(* Next, we prove that task_eqdef is indeed an equality, ... *)
Lemma eqn_task : Equality.axiom task_eqdef.
Proof.
unfold Equality.axiom; intros x y.
destruct (task_eqdef x y) eqn:EQ.
{
apply ReflectT.
unfold task_eqdef in ×.
move: EQ ⇒ /andP [/andP [/andP [/eqP ID /eqP COST] /eqP PERIOD] /eqP DL].
by destruct x, y; simpl in *; subst.
}
{
apply ReflectF.
unfold task_eqdef, not in *; intro BUG.
apply negbT in EQ; rewrite negb_and in EQ.
destruct x, y.
rewrite negb_and in EQ.
move: EQ ⇒ /orP [EQ | /eqP DL]; last by apply DL; inversion BUG.
move: EQ ⇒ /orP [EQ | /eqP PERIOD].
rewrite negb_and in EQ.
move: EQ ⇒ /orP [/eqP ID | /eqP COST].
by apply ID; inversion BUG.
by apply COST; inversion BUG.
by apply PERIOD; inversion BUG.
}
Qed.
(* ..., which allows instantiating the canonical structure. *)
Canonical concrete_task_eqMixin := EqMixin eqn_task.
Canonical concrete_task_eqType := Eval hnf in EqType concrete_task concrete_task_eqMixin.
End Defs.
Section ConcreteTaskset.
Definition concrete_taskset :=
taskset_of concrete_task_eqType.
End ConcreteTaskset.
End ConcreteTask.