Library rt.util.bigord
Require Import rt.util.tactics.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about big operators over Ordinals that use Ordinal functions.
There is no support for them in ssreflect. *)
Section BigOrdFunOrd.
Definition fun_ord_to_nat {n} {T} (x0: T) (f: 'I_n → T) : nat → T.
(* if x < n, apply the function f in the (Ordinal x: 'I_n), else return default x0. *)
intro x; destruct (x < n) eqn:LT;
[by apply (f (Ordinal LT)) | by apply x0].
Defined.
Lemma eq_fun_ord_to_nat :
∀ n {T: Type} x0 (f: 'I_n → T) (x: 'I_n),
(fun_ord_to_nat x0 f) x = f x.
Proof.
ins; unfold fun_ord_to_nat; des_eqrefl.
by f_equal; apply ord_inj.
by destruct x; ins; rewrite i in EQ.
Qed.
Lemma eq_bigr_ord T n op idx r (P : pred 'I_n)
(F1: nat → T) (F2: 'I_n → T) :
(∀ i, P i → F1 i = F2 i) →
\big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.
Proof.
induction r; ins; first by rewrite 2!big_nil.
rewrite 2!big_cons; destruct (P a) eqn:EQ;
by rewrite IHr; ins; rewrite H; ins.
Qed.
Lemma big_mkord_ord {T} {n} {op} {idx} x0 (P : pred 'I_n) (F: 'I_n → T) :
\big[op/idx]_(i < n | P i) F i =
\big[op/idx]_(i < n | P i) (fun_ord_to_nat x0 F) i.
Proof.
have EQ := eq_bigr_ord T n op idx _ _ (fun_ord_to_nat x0 F) F.
rewrite EQ; [by ins | by ins; rewrite eq_fun_ord_to_nat].
Qed.
End BigOrdFunOrd.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about big operators over Ordinals that use Ordinal functions.
There is no support for them in ssreflect. *)
Section BigOrdFunOrd.
Definition fun_ord_to_nat {n} {T} (x0: T) (f: 'I_n → T) : nat → T.
(* if x < n, apply the function f in the (Ordinal x: 'I_n), else return default x0. *)
intro x; destruct (x < n) eqn:LT;
[by apply (f (Ordinal LT)) | by apply x0].
Defined.
Lemma eq_fun_ord_to_nat :
∀ n {T: Type} x0 (f: 'I_n → T) (x: 'I_n),
(fun_ord_to_nat x0 f) x = f x.
Proof.
ins; unfold fun_ord_to_nat; des_eqrefl.
by f_equal; apply ord_inj.
by destruct x; ins; rewrite i in EQ.
Qed.
Lemma eq_bigr_ord T n op idx r (P : pred 'I_n)
(F1: nat → T) (F2: 'I_n → T) :
(∀ i, P i → F1 i = F2 i) →
\big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.
Proof.
induction r; ins; first by rewrite 2!big_nil.
rewrite 2!big_cons; destruct (P a) eqn:EQ;
by rewrite IHr; ins; rewrite H; ins.
Qed.
Lemma big_mkord_ord {T} {n} {op} {idx} x0 (P : pred 'I_n) (F: 'I_n → T) :
\big[op/idx]_(i < n | P i) F i =
\big[op/idx]_(i < n | P i) (fun_ord_to_nat x0 F) i.
Proof.
have EQ := eq_bigr_ord T n op idx _ _ (fun_ord_to_nat x0 F) F.
rewrite EQ; [by ins | by ins; rewrite eq_fun_ord_to_nat].
Qed.
End BigOrdFunOrd.