Library rt.util.induction

Require Import rt.util.tactics.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.

(* Induction lemmas for natural numbers. *)
Section NatInduction.

  Lemma strong_ind :
     (P: nat Prop),
      ( n, ( k, k < n P k) P n)
       n, P n.
  Proof.
    intros P ALL n; apply ALL.
    induction n; first by ins; apply ALL.
    intros k LTkSn; apply ALL.
    by intros k0 LTk0k; apply IHn, leq_trans with (n := k).
  Qed.

  Lemma leq_as_delta :
     x1 (P: nat Prop),
      ( x2, x1 x2 P x2)
      ( delta, P (x1 + delta)).
  Proof.
    ins; split; last by intros ALL x2 LE; rewrite -(subnK LE) addnC; apply ALL.
    {
      intros ALL; induction delta.
        by rewrite addn0; apply ALL, leqnn.
        by apply ALL; rewrite -{1}[x1]addn0; apply leq_add; [by apply leqnn | by ins].
    }
  Qed.

End NatInduction.