Library rt.util.induction
Require Import rt.util.tactics.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Induction lemmas for natural numbers. *)
Section NatInduction.
Lemma strong_ind :
∀ (P: nat → Prop),
(∀ n, (∀ k, k < n → P k) → P n) →
∀ n, P n.
Proof.
intros P ALL n; apply ALL.
induction n; first by ins; apply ALL.
intros k LTkSn; apply ALL.
by intros k0 LTk0k; apply IHn, leq_trans with (n := k).
Qed.
Lemma leq_as_delta :
∀ x1 (P: nat → Prop),
(∀ x2, x1 ≤ x2 → P x2) ↔
(∀ delta, P (x1 + delta)).
Proof.
ins; split; last by intros ALL x2 LE; rewrite -(subnK LE) addnC; apply ALL.
{
intros ALL; induction delta.
by rewrite addn0; apply ALL, leqnn.
by apply ALL; rewrite -{1}[x1]addn0; apply leq_add; [by apply leqnn | by ins].
}
Qed.
End NatInduction.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Induction lemmas for natural numbers. *)
Section NatInduction.
Lemma strong_ind :
∀ (P: nat → Prop),
(∀ n, (∀ k, k < n → P k) → P n) →
∀ n, P n.
Proof.
intros P ALL n; apply ALL.
induction n; first by ins; apply ALL.
intros k LTkSn; apply ALL.
by intros k0 LTk0k; apply IHn, leq_trans with (n := k).
Qed.
Lemma leq_as_delta :
∀ x1 (P: nat → Prop),
(∀ x2, x1 ≤ x2 → P x2) ↔
(∀ delta, P (x1 + delta)).
Proof.
ins; split; last by intros ALL x2 LE; rewrite -(subnK LE) addnC; apply ALL.
{
intros ALL; induction delta.
by rewrite addn0; apply ALL, leqnn.
by apply ALL; rewrite -{1}[x1]addn0; apply leq_add; [by apply leqnn | by ins].
}
Qed.
End NatInduction.