Library rt.util.ord_quantifier
Require Import rt.util.tactics.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype.
(* Lemmas about the exists for Ordinals: ∃ x, P x. *)
Section OrdExists.
Lemma exists_ord0:
∀ P,
[∃ x in 'I_0, P x] = false.
Proof.
intros P.
apply negbTE; rewrite negb_exists; apply/forall_inP.
intros x; destruct x as [x LT].
by exfalso; rewrite ltn0 in LT.
Qed.
Lemma exists_recr:
∀ n P,
[∃ x in 'I_n.+1, P x] =
[∃ x in 'I_n, P (widen_ord (leqnSn n) x)] ∨ P (ord_max).
Proof.
intros n P.
apply/idP/idP.
{
move ⇒ /exists_inP EX; destruct EX as [x IN Px].
destruct x as [x LT].
remember LT as LT'; clear HeqLT'.
rewrite ltnS leq_eqVlt in LT; move: LT ⇒ /orP [/eqP EQ | LT].
{
apply/orP; right.
unfold ord_max; subst x.
apply eq_trans with (y := P (Ordinal LT')); last by done.
by f_equal; apply ord_inj.
}
{
apply/orP; left.
apply/exists_inP; ∃ (Ordinal LT); first by done.
apply eq_trans with (y := P (Ordinal LT')); last by done.
by f_equal; apply ord_inj.
}
}
{
intro OR; apply/exists_inP.
move: OR ⇒ /orP [/exists_inP EX | MAX].
{
by destruct EX as [x IN Px]; ∃ (widen_ord (leqnSn n) x).
}
by ∃ ord_max.
}
Qed.
End OrdExists.
(* Lemmas about the forall for Ordinals: ∃ x, P x. *)
Section OrdForall.
Lemma forall_ord0:
∀ P,
[∀ x in 'I_0, P x].
Proof.
intros P; apply/forall_inP.
by intros x IN0; destruct x.
Qed.
Lemma forall_recr:
∀ n P,
[∀ x in 'I_n.+1, P x] =
[∀ x in 'I_n, P (widen_ord (leqnSn n) x)] ∧ P (ord_max).
Proof.
intros n P.
apply/idP/idP.
{
move ⇒ /forall_inP ALL.
apply/andP; split; last by apply ALL.
by apply/forall_inP; intros x IN; apply ALL.
}
{
move ⇒ /andP [/forall_inP ALL MAX].
apply/forall_inP; intros x IN.
destruct x as [x LT].
unfold ord_max in ×.
remember LT as LT'; clear HeqLT'.
rewrite ltnS leq_eqVlt in LT; move: LT ⇒ /orP [/eqP EQ | LT].
{
subst n.
apply/eqP; rewrite -MAX; apply/eqP.
by unfold ord_max; apply f_equal, ord_inj.
}
{
feed (ALL (Ordinal LT)); first by done.
apply/eqP; rewrite -ALL; apply/eqP.
by apply f_equal, ord_inj.
}
}
Qed.
End OrdForall.
(* Tactics for simplifying exists and forall. *)
Ltac simpl_exists_ord := rewrite !exists_recr !exists_ord0 /=.
Ltac simpl_forall_ord := rewrite !forall_recr !forall_ord0 /=.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype.
(* Lemmas about the exists for Ordinals: ∃ x, P x. *)
Section OrdExists.
Lemma exists_ord0:
∀ P,
[∃ x in 'I_0, P x] = false.
Proof.
intros P.
apply negbTE; rewrite negb_exists; apply/forall_inP.
intros x; destruct x as [x LT].
by exfalso; rewrite ltn0 in LT.
Qed.
Lemma exists_recr:
∀ n P,
[∃ x in 'I_n.+1, P x] =
[∃ x in 'I_n, P (widen_ord (leqnSn n) x)] ∨ P (ord_max).
Proof.
intros n P.
apply/idP/idP.
{
move ⇒ /exists_inP EX; destruct EX as [x IN Px].
destruct x as [x LT].
remember LT as LT'; clear HeqLT'.
rewrite ltnS leq_eqVlt in LT; move: LT ⇒ /orP [/eqP EQ | LT].
{
apply/orP; right.
unfold ord_max; subst x.
apply eq_trans with (y := P (Ordinal LT')); last by done.
by f_equal; apply ord_inj.
}
{
apply/orP; left.
apply/exists_inP; ∃ (Ordinal LT); first by done.
apply eq_trans with (y := P (Ordinal LT')); last by done.
by f_equal; apply ord_inj.
}
}
{
intro OR; apply/exists_inP.
move: OR ⇒ /orP [/exists_inP EX | MAX].
{
by destruct EX as [x IN Px]; ∃ (widen_ord (leqnSn n) x).
}
by ∃ ord_max.
}
Qed.
End OrdExists.
(* Lemmas about the forall for Ordinals: ∃ x, P x. *)
Section OrdForall.
Lemma forall_ord0:
∀ P,
[∀ x in 'I_0, P x].
Proof.
intros P; apply/forall_inP.
by intros x IN0; destruct x.
Qed.
Lemma forall_recr:
∀ n P,
[∀ x in 'I_n.+1, P x] =
[∀ x in 'I_n, P (widen_ord (leqnSn n) x)] ∧ P (ord_max).
Proof.
intros n P.
apply/idP/idP.
{
move ⇒ /forall_inP ALL.
apply/andP; split; last by apply ALL.
by apply/forall_inP; intros x IN; apply ALL.
}
{
move ⇒ /andP [/forall_inP ALL MAX].
apply/forall_inP; intros x IN.
destruct x as [x LT].
unfold ord_max in ×.
remember LT as LT'; clear HeqLT'.
rewrite ltnS leq_eqVlt in LT; move: LT ⇒ /orP [/eqP EQ | LT].
{
subst n.
apply/eqP; rewrite -MAX; apply/eqP.
by unfold ord_max; apply f_equal, ord_inj.
}
{
feed (ALL (Ordinal LT)); first by done.
apply/eqP; rewrite -ALL; apply/eqP.
by apply f_equal, ord_inj.
}
}
Qed.
End OrdForall.
(* Tactics for simplifying exists and forall. *)
Ltac simpl_exists_ord := rewrite !exists_recr !exists_ord0 /=.
Ltac simpl_forall_ord := rewrite !forall_recr !forall_ord0 /=.